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Understanding how spatial attention is distributed over space

(i.e. the attentional window) is highly important for theoretical,

methodological, as well as applied reasons. One fundamental

challenge to the study of the attentional window is that most of

our current knowledge is based on measuring distractors

interference, or relying in some other way on properties of the

participants’ responses (e.g. response time). However, other

factors such as distractor visibility may mediate distractor

interference, and in general participants’ response can be

influenced by many other factors including higher-level

strategies, experience, response history, response biases, and

so on. Recent paradigms, which do not rely on participants’

response, such as measuring attentional modulations of the

pupillary light response, may help us face this challenge.
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Introduction
Spatial attention refers to selection processes that grant

priority to information gathered from a specific location.

From the beginning of the rigorous study of spatial

attention questions were asked regarding the topographic

nature of the restricted area to which attention is allocated

(henceforth, the attentional window): Does the atten-

tional window have a fixed size [1] or is it flexible

[2,3]? Does the effect of attention decrease with distance

in a monotonic fashion [3,4], or is the central enhance-

ment accompanied by suppression at the surrounds [5,6]?

What is the window’s minimal size [7,8��], and what is its

maximal size [9]? Which factors affect the extent of the

attentional window [10,11��,12]? These questions bear

important implications for many conceptual and compu-

tational models of visual attention [2,5,13–15]. For

instance, the size of the attentional window plays an
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important role in both the attentional-attraction-field

model [13] and the normalization model [14]. Knowledge

of this value is essential for their ability to simulate

performance. Yet there is little agreement regarding

the answers to these questions. One reason for this lack

of agreement may lie with differences between different

manipulations of the window’s size (e.g. varying the size

of an attentional cue to encourage variations in window

size [16,17], or manipulating the degree of uncertainty

regarding the target location [18,19] under the assump-

tion that the window gets larger as uncertainty increases).

Although different methods have the same goal, their

outcomes are not always the same [20]. The controversy

regarding the nature of the attentional window may also

be rooted in the way it is measured. In the following

sections, I describe the canonical method for measuring

the spread of attention and its limitations, and then I

review several alternative methods that may help solving

some of the controversies in the field.

Methods relying on the participant’s response
The most prevalent way to study the size of the

attentional window relies on distractor interference

[3,6,7,21–26]. The task-relevant target is presented

together with distractors (irrelevant items) that may inter-

fere with responding. The target-distractor distance is

manipulated, and the degree to which the distractors

hinder performance is measured as a function of this

distance. Distances at which the distractors influence

performance are considered within the window. This

method generated several assertions about the attentional

window. For instance, Eriksen and Hoffman [7] presented

a target flanked by distractor, and measured response time

(RT) to identify the target with different target-distractor

distances. They found significantly slower RT with a 0.53�

distance, but no RT difference with larger distances. They

concluded that only the distractors at the 0.53� distance fell

within the window, suggesting that the window can be

narrowed down to a diameter of ~1� (i.e. 0.5� center-to-

edge). Another example is a flanker-task designed to

examine how load affects the spread of attention

[21,22]. The participants had to identify a target while

ignoring a distractor that was either compatible or incom-

patible with the target. Distractor interference was defined

as RT difference between these two conditions. Target-

distractor distances and the levels of perceptual and/or

working-memory load were manipulated. A complex pat-

tern of results emerged: the window was narrower with

high perceptual load, but only when working-memory load

was low. Similarly, the window was narrower with low

working-memory load, but only when perceptual load

was high. Additionally, the window was narrower for
www.sciencedirect.com
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participants with high working-memory capacity. These

findings suggest that the participants could reduce the size

of the attentional window to meet perceptual demands but

this required cognitive resources.

Notwithstanding the contribution of this paradigm to our

understanding of the spatial distribution of attention,

measuring the attentional window via distractibility relies

on two core assumptions. First, it is assumed that only

items within the attentional window are sufficiently pro-

cessed to generate interference. However, a large body of

evidence suggests that unattended items are processed

and may affect performance [23,27,28]. Second, it is

assumed that items within the window will generate

interference. However, other factors than the spatial

extent of attention may limit items’ ability to generate

interference. One such a factor is visual acuity limitations

arising when distractors at larger distances appear at more

peripheral regions [24,25].

Another method for studying the attentional window

presents a pre-cue at various distances from the upcoming

target. The pre-cue, typically, attracts attention to its

location. Performance decrement as a function of cue-

target distance is taken to reflect the spatial distribution of

attention [5,12]. Employing this method, Cutzu and

Tsotsos [5] demonstrated that the accuracy decrement,

observed with increasing cue-target distance, follows a

U-shape. This suggested that the facilitatory area of the

attentional window has an inhibitory surround. The

advantage of this method over measuring distractibility

is that there is no need to assume that only items within

the window are sufficiently processed. However, because

the measurement of the attentional window depends on

absolute RT or accuracy, it could be contaminated by

other factors than attention (e.g. with small cue-target

distances masking effects may interact with attentional

effects). A possible remedy is to include a neutral condi-

tion that is similar to the cued condition but does not

trigger attention. This could be established by employing

a ‘multi-cue’ neutral condition: cues are presented simul-

taneously at all possible locations ensuring that no unique

location is indicated, but also that the physical informa-

tion at the cued location is identical in both conditions

[29,30]. Then, one can measure how the cued-neutral

difference changes as a function of distance, thereby

cancelling out factors that are not attention-related.

Indeed, Shioiri et al. [31] employed a variant of this

method. They first demonstrated that attention reduces

the flash-lag effect (FLE), and then measured the FLE as

a function of the distance from the cue. Critically, the

attentional window was evaluated based on differences in

FLE between cueing a single location and cueing all

possible locations. This revealed that the size of the

window varies as a function of spatial-uncertainty, and

corroborated the assertion that the enhancement at the

window’s central regions is accompanied by suppression
www.sciencedirect.com 
at its surrounds. Still, all methods that rely on participants’

response suffer from similar limitations brought about by

the fact that this response could be modulated by factors

that are not directly related to the spatial spread of

attention, such as higher-level strategies [32–34],

response history [35], experience [36], learning [37],

response biases [24,38,39], personality [40], and so on.

This is especially so with RT, which may also reflect

factors related to motor preparation [38].

Neurophysiological measurements
One way to avoid the shortcomings involved in relying

on participants’ response is to measure the spatial

extent of attention as it is reflected in brain activity

[41��,42��,43,44]. One such a recent study [41��], esti-

mated the attentional window by measuring both steady

state visual evoked potential (SSVEP) and event related

potential (ERP). SSVEPs are oscillatory brain responses

that match the frequency of a continuously flickering

stimulus, whereas ERPs are recorded in response to an

isolated event. The display included eight disks, of

which one (or two) was cued as task-relevant. Letters

appeared on all disks, but only those on the cued disk

required response. The disks flickered at different fre-

quencies, allowing a separate activity measurement for

each disk as a function of its distance from the cued disk.

Additionally, the authors measured how target-distractor

distance modulated the difference between target-

locked and distractors-locked ERPs, focusing on the

P3 component. The SSVEP analysis suggested that

attention was spread broadly, whereas the ERP analysis

suggested that attention was narrowly focused. Because

the neuronal origins of SSVEPs are presumably earlier

than those of the P3 component, the authors proposed

that attention is initially broadly spread, but later on it is

focused more narrowly.

Another recent study [42��] estimated the spread of

attention from single-voxel fMRI time course modeling.

The rational was to estimate the population receptive

field (pRF) of a given voxel with/without covert attention,

and then compute the spatial spread of attention based on

how attention modulated the pRF, as the stimulus tra-

versed it. Repeating this procedure for two different

eccentricities with different brain areas revealed that

the size of the attentional window increases with eccen-

tricity and varies across the hierarchy of brain areas.

Oculomotor capture
Another way to preclude the undesired involvement of

factors related to participants’ response is eye-movements

measurements [33,34,45,46]. Accordingly, van Beilen

et al. evaluated the attentional window via measurements

of eye-movements [11��]. Their rational was based on

Belopolsky and Theeuwes [47] who demonstrated that an

irrelevant color-singleton is more likely to hinder perfor-

mance when a large attentional window is encouraged,
Current Opinion in Psychology 2019, 29:76–81
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The experimental procedure, rational and results of Tkacz-Domb and Yeshurun [8��]. (a) A trial started with a central square that had to be fixated

throughout the trial, and two peripheral squares. A central arrow followed, marking the side to which covert attention should be allocated. Finally, two

rotating Ts were presented, each surround by four task-irrelevant disks that were either bright or dark. The task was to count the number of times the

attended T assumed an upright orientation. The attended side, and disks’ brightness at the attended side varied between trials in a random order.

T-disks distance was blocked. Display luminance levels were identical in all trials. (b) When the T-disks distance is small enough so that the disks fall

within the attentional window (marked here by a doted red line for demonstration purpose) pupil size should be larger when the participants are

attending the side with the dark disks (left panel) than when they attend the side with the bright disks (right panel). (c) Such results were observed for a

T-disks distance (center-to-edge) of 1� suggesting that the minimal diameter of the attentional window is at least 2�. (d) When the T-disks distance is

larger than the radius of the attentional window (i.e. the disks fall outside the attentional window) pupil size should be similar regardless of whether the

participants are attending the side with the dark (left panel) or bright (right panel) disks. (e) Such results were observed for a T-disks distance

(center-to-edge) of 2� suggesting that the minimal diameter of the attentional window is smaller than 4�.
Image (a) is taken from Figure 1 in Tkacz-Domb and Yeshurun [8��], and images (c) and (e) were taken from Figure 3 in Tkacz-Domb and Yeshurun

[8��]. These images are licensed under a Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/.
and concluded that only irrelevant items within the

window can capture attention. Hence, van Beilen et al.
estimated the size of the window by measuring the region

in which an abrupt onset evoked an eye-movement

towards its location. They varied the predictive value
Current Opinion in Psychology 2019, 29:76–81 
of the abrupt onset and its eccentricity, and found that

peripheral abrupt onsets were more likely to evoke an

eye-movement when they were more predictable. This

led them to conclude that the participants could volun-

tarily control the size of their window. This study did not
www.sciencedirect.com
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rely on participants’ response and therefore avoided the

above-mentioned limitations. However, its paradigm

requires the assumption that items outside the window

cannot capture attention, even when they involve abrupt

onsets.

Pupillometry
To refrain from making arguable assumptions about the

degree to which items outside the attentional window are

processed or capture attention, and avoid the confounds

involved in relying on participants’ response, we [8��]
recently suggested to examine the attentional spread by

measuring the pupillary light response (PLR) — pupil’s

constriction when luminance is high and dilation when it

is low. The PLR was considered a low-level reflex.

However, recent studies showed PLR modulations by

awareness [48�], and most importantly by spatial covert

attention. Under identical overall luminance levels,

covertly attending a brighter area produced pupillary

constriction relative to covertly attending a darker area

[49�,50,51�,52,53]. We used these attentional modula-

tions of the PLR to estimate the spatial extent of atten-

tion without having to rely on performance. We were

particularly interested in the window’s minimal size and

therefore we employed a task requiring a narrowly

focused attention (Figure 1a). The display included

two rotating Ts surrounded by irrelevant disks. The disks

were dark on one side and light on the other. An arrow

indicated which T to attend. Critically, overall luminance

level was always the same, but the T-disks distance

varied. Hence, when the disks appear within the window,

attention should modulate the PLR (Figure 1b); but

when the T-disks distance is larger than the window,

attention should not affect pupil size (Figure 1d). We

found that attention modulated pupil size with the 1�

T-disks distance (Figure 1c) but not with larger distances

(Figure 1e), suggesting that the minimal diameter of the

attentional window is at least 2� — twice the size mea-

sured based on participants’ response [see ‘Methods

relying on the participant’s response’ section, Ref. 7].

Note, that here the disks were neither compatible nor

incompatible with the required response, and we did not

assume that they were not processed without attention. In

fact, we assumed their luminance level always affected

the PLR, but we tested PLR modulations beyond those

of overall luminance level; we tested effects that are

specific to covert attention [49�,50,51�,52,53]. Moreover,

because pupil size is not under direct volitional control

[54], it is less affected by higher-level cognitive processes.

Thus, this study underscores the merit of utilizing the

PLR for direct examination of visual attention and its

spatial extent.

Conclusions
Understanding how attention is spread across space is

essential for any attempt to develop a comprehensive

model of visual attention. Thus far, a large part of our
www.sciencedirect.com 
knowledge about the attentional window was established

based on participants’ response. However, responses can

be influenced by many other factors, such as personality

traits, experience with the task, learning on various time

scales, processing history, biases, speed accuracy trade-

offs, and more [24,32–40]. Additionally, the most common

paradigm for measuring the attentional window relies on

assumptions regarding the fate of unattended information

that may not always hold. Fortunately, several recent

studies were set out to measure the attentional window

with novel and exciting methodologies. We find particu-

larly exciting the finding that covertly attending areas of

different local luminance affects the PLR, even with

constant overall luminance. Measuring such attentional

modulations of the PLR affords examining the spread of

attention in complete independence of participants’

response, and does not require any controversial assump-

tions. Using this method [8��] revealed that the minimal

size of the window is twofold larger than that estimated

using the traditional method [7]. Future research could

use such techniques to test other hypotheses regarding

the attentional window that were based on participants’

response (e.g. that its size varies as a function of load, that

it is controlled voluntary, etc.), evaluate the different size

manipulations, and generate new hypotheses, including

hypotheses aiming at integrating behavioral and neuronal

models of attention.
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overall luminance levels are constant. This demonstrates the ability of
covert spatial attention to affect the pupillary light response that was thus
far considered a low-level reflex.
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