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A B S T R A C T

This article advances a framework that casts object recognition as a process of discrimination between alter-
native object identities, in which top-down and bottom-up processes interact—iteratively when necessary—with
attention to distinguishing features playing a critical role. In two experiments, observers discriminated between
different types of artificial fish. In parallel, a secondary, variable-SOA visual-probe detection task was used to
examine the dynamics of visual attention. In Experiment 1, the fish varied in three distinguishing features: one
indicating the general category (saltwater, freshwater), and one of the two other features indicating the specific
type of fish within each category. As predicted, in the course of recognizing each fish, attention was allocated
iteratively to the distinguishing features in an optimal manner: first to the general category feature, and then,
based on its value, to the second feature that identified the specific fish. In Experiment 2, two types of fish could
be discriminated on the basis of either of two distinguishing features, one more visually discriminable than the
other. On some of the trials, one of the two alternative distinguishing features was occluded. As predicted, in the
course of recognizing each fish, attention was directed initially to the more discriminable distinguishing feature,
but when this feature was occluded, it was then redirected to the less discriminable feature. The implications of
these findings, and the interactive-iterative framework they support, are discussed with regard to several fun-
damental issues having a long history in the literatures on object recognition, object categorization, and visual
perception in general.

1. Introduction

Object recognition is of fundamental importance for the perception
of and interaction with our environment. Despite extensive research,
however, there is still no complete and comprehensive theory that can
explain how we recognize objects, and some of the most basic char-
acteristics of the recognition process continue to be a subject of de-
bate.

One controversial issue concerns the role of top-down versus
bottom-up processing. Despite many other differences, classic theories
of object recognition (e.g., Biederman, 1987; Marr & Nishihara, 1978;
Poggio & Edelman, 1990; Reisenhuber & Poggio, 1999; Tarr & Bülthoff,
1995; Tarr & Pinker, 1989; Ullman, 1989) are generally united in what
might be called the orthodox view—that object recognition is based
primarily on a bottom-up analysis of the visual input; recognition is
achieved when some temporary representation of the input image
matches a stored object representation. The functional architecture of
the visual cortex—the increase in the receptive field size and in re-
presentational complexity from lower to higher areas in the cortex

(Maunsell & Newsome, 1987; Vogels & Orban, 1996)—has been pointed
to as consistent with the bottom-up view. Also, findings that the pro-
cesses involved in object recognition are sometimes remarkably fast,
occurring within 100–200ms of stimulus presentation (e.g., Thorpe,
Fize, &Marlot, 1996), have been taken by some researchers as evidence
that object recognition can occur largely with feed-forward processing
alone (e.g., Wallis & Rolls, 1997; but see Evans & Treisman, 2005).

Some proposals, however, have challenged the orthodox view, em-
phasizing the need for both bottom-up and top-down processing (e.g.,
Bar, 2003; Bullier, 2001; Ganis, Schendan, & Kosslyn, 2007; Humphreys,
Riddoch, & Price, 1997; Lee, 2002; McClelland& Rumelhart, 1981;
Schendan&Maher, 2009; Schendan& Stern, 2008; Ullman, 1995). For
example, Bar (2003), Bar et al., 2006), inspired by Ullman’s (1995)
model, proposed that partially processed visual data based on low spatial
frequencies of the input is transmitted from the initial areas of the visual
stream directly to the orbito-frontal cortex. This low-spatial-frequency
representation invokes initial hypotheses regarding the identity of the
input, which subsequently facilitate the identification process by con-
straining the number of possibilities that have to be inspected (see also
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Peyrin et al., 2010). Similarly, Bullier (2001) proposed a model of visual
processing by which initially, information from the visual stimulus is
transferred rapidly via magnocellular, dorsal pathways. Results from this
first-pass computation are then sent back by feedback connections and
used to guide further processing of parvocellular and koniocellular in-
formation in the inferotemporal cortex. The existence of massive pro-
jections from higher to lower areas of the visual pathways (e.g., Bullier,
2001; Lamme&Roelfsema, 2000) suggests that the involvement of top-
down processing in object recognition is physiologically viable. Top-
down influences on object recognition are also implicated in behavioral
studies. For example, advance information about the target in RSVP
experiments improves target detection (Intraub, 1981), priming by ca-
tegory names substantially improves object identification (Reinitz,
Wright, & Loftus, 1989), and objects are recognized better in expected
than in unexpected contexts (e.g., Bar &Ullman, 1996; Biederman, 1972,
1981).

Several models propose that top-down and bottom-up information
might be integrated via an iterative error-minimization mechanism,
where top-down predictions are matched to processed bottom-up in-
formation in recursive, interacting loops of activity (Friston, 2005;
Hinton, Dayan, Frey, & Neal, 1995; Kveraga, Ghuman, & Bar, 2007;
Mumford, 1992; Ullman, 1995).

2. Role of attention in object recognition

Partly related to the preceding issue is an ongoing controversy re-
garding the role of attention in object recognition. Some researchers
have provided evidence suggesting that object recognition can be car-
ried out in the near absence of attention (e.g., Li, VanRullen,
Koch, & Perona, 2002; Luck, Vogel, & Shapiro, 1996). Other re-
searchers, however, hold that attention plays a central role (e.g.,
Ganis & Kosslyn, 2007; Hochstein & Ahissar, 2002; Treisman &Gelade,
1980). Most notably, the highly influential Feature Integration Theory
(Treisman &Gelade, 1980) holds that attention is crucial for the per-
ception of an integrated object, as it operates to bind featural in-
formation represented in independent feature maps. In contrast, the
more recent Reverse Hierarchy Theory (Hochstein & Ahissar, 2002)
holds that whereas the initial perception of coherent conjoined objects
can be achieved “at a glance” under spread attention, based on feed-
forward processing alone, top-down focused attention must subse-
quently be invoked to consciously identify specific details such as or-
ientation, color, and precise location.

An additional role for attention in object recognition has emerged
from the view of visual perception as a process of hypothesis testing
(Gregory, 1966; von Helmholtz, 1867), by which attention is directed to
diagnostic feature information that is used to decide between alter-
native hypotheses regarding object identity (e.g., Baruch,
Kimchi, & Goldsmith, 2014; Ganis & Kosslyn, 2007; Ganis et al., 2007).
This view, advanced in the present research, is outlined in the following
section.

3. Interactive-Iterative attentional framework for object
recognition

The present work was guided by a framework that views object
recognition as a process of discrimination between probable alter-
natives—a process in which bottom-up and top-down processes in-
teract, iteratively when necessary, with attention playing a crucial role
in this interaction. We outline here the set of principles that comprises
this framework (a more concrete schematic depiction appears as Fig. 13
in General Discussion)—essentially, a synthesis of ideas that have been
proposed previously, from which specific predictions can be derived
and empirically examined.

3.1. Object recognition begins with expectations based on past experience
and present context

Object recognition undoubtedly requires an analysis of visual data.
Yet, contrary to the conventional view, we suggest that the recognition
process actually begins at the top. Everyday situations generally evoke
expectations about probable objects, based on world knowledge, con-
text, and goals (e.g., Bar, 2004; Biederman, 1972; Norman & Bobrow,
1976; Palmer, 1975). Even in the laboratory, expectations are evoked
by the experimental task. Pure data-driven recognition––where an ob-
ject could be anything––are presumably quite rare, and can be seen as a
special case in which the probable alternatives are all objects known to
the observer. A similar view of perception has recently been revived in
several models using Bayesian inference, in which top-down priors help
to disambiguate noisy bottom-up sensory input signals (e.g., Epshtein,
Lifshitz, & Ullman, 2008; Friston & Kiebel, 2009).

3.2. The initial visual input is inherently limited

The initial information extracted from the visual scene in a data-
driven (bottom-up) manner is inherently partial. In natural scenes,
portions of objects—those on the side away from the viewer—are
hidden from view and surfaces may undergo occlusion; sometimes the
viewing conditions are poor, and at other times the relevant diagnostic
information is subtle and cannot be acquired at a glance. Moreover,
even under optimal viewing conditions, the initial information may be
partial (e.g., coarse information carried by low spatial frequencies; Bar,
2003; Fabre-Thorpe, 2011; Hughes, Nozawa, & Kitterle, 1996). Al-
though, depending on context, the initial partial information may
sometimes suffice for recognition, in many cases object recognition will
require additional processing.

3.3. Perceptual hypotheses guide the allocation of attention to distinguishing
features

It was suggested long ago (Gregory, 1966; von Helmholtz, 1867)
that perception is essentially a hypothesis-assessment process. Building
on this idea, and in line with more recent ideas concerning the “pre-
dictive brain” (e.g., Bubic, von Cramon, & Schubotz, 2010;
Enns & Llreas, 2008), we assume that the observer’s expectations—-
whether formed prior to or in interaction with the visual input—evoke
a set of alternative hypotheses regarding the possible identity of the
observed object. These hypotheses are expressed as the activation of
internal representations of candidate objects, giving special weight to
diagnostic features1 (e.g., Gillebert, Op de Beeck, Panis, &Wagemans,
2009; Schyns & Rodet, 1997; Sigala & Logothetis, 2002; Wagar & Dixon,
2005) that discriminate between competing hypotheses. Attention is
then directed to these distinguishing features in order to facilitate the
extraction of the relevant information (see also Ganis & Kosslyn, 2007;
Kosslyn, 1994).

The specific claim that attention is directed to distinguishing fea-
tures in object recognition has been empirically addressed in relatively
few studies, most of which used eye tracking as an indirect measure of
spatial attention. For example, Rehder and Hoffman (2005a, 2005b; see
also Blair, Watson, Walshe, and Maj, 2009) found that during visual
object category learning, diagnostic features were fixated more often
than non-diagnostic features, and that the proportion of correct re-
sponses correlated with the time diagnostic features were fixated. Using
a more direct measure of spatial attention in the context of word and

1 Note that the notion of features (and hence, distinguishing features) as conceived
here is very broad, and refers to any aspect of an object that can serve to discriminate
between the set of probable alternatives. Such aspects may include, for example, struc-
tural or configural features (e.g., geons; Biederman, 1987), surface features (e.g., color or
texture), global features (e.g. global shape: elongated vs. round), or localized features and
parts (e.g., the shape or color of a beak).

O. Baruch et al. Cognition 170 (2018) 228–244

229



letter recognition, Navon and Margalit (1983) found that detection rate
of a visual probe was highest when the probe appeared near the feature
that distinguished between two competing word or letter alternatives.

Recently, utilizing several different methods, including primed
matching, visual probe detection, and spatial cueing, Baruch et al.
(2014) provided further converging evidence for the claim that atten-
tion is allocated to distinguishing features in the course of object re-
cognition. Using various sets of line drawings of artificial fish, they
showed that: (1) recognizing a fish primed its distinguishing features
but not its other features, (2) visual probes presented near a distin-
guishing feature were detected faster and more often than probes pre-
sented near a non-distinguishing feature, and (3) advance allocation of
attention to the location of the distinguishing feature by a transient pre-
cue yielded faster recognition latencies than when the location of a non-
distinguishing feature was cued. Furthermore, they showed that the
attended distinguishing features are context dependent: Attention was
allocated to different features of the same fish, depending on the overall
stimulus set. Similar results were found using photographs of natural
sea animals, despite substantial variation in physical characteristics,
posture, lighting, viewing angle, and so forth.

3.4. Object recognition is an interactive iterative process

Information extracted from the initially attended features may suf-
fice for recognition, but if not, hypotheses are refined and the process is
repeated in an iterative manner until recognition is achieved. Although
there may be instances in which the visual data quality is high and the
set of possible alternatives highly constrained so that recognition is
seemingly instantaneous (e.g., Thorpe et al., 1996), achieved in a single
iteration of bottom-up analysis, by our view such instances are best
conceived as a special case of what is potentially a more complex (in-
teractive and iterative) object recognition process (see General Dis-
cussion).

Although the idea that the object recognition process may involve
interactive-iterative shifts of attention to diagnostic visual information
has been put forward in theoretical discussions (e.g., Ganis & Kosslyn,
2007), surprisingly, almost no empirical evidence for this idea has been
provided. To our knowledge, there is only one study, using eye move-
ment measures, whose results can be taken to suggest that attention is
allocated to distinguishing features in an iterative manner. In an arti-
ficial-object categorization task, Blair et al. (2009) found systematic
temporal patterns in the shifting of eye fixations, suggesting that the
information gleaned from fixating on one distinguishing feature could
be used to determine which other distinguishing feature would be most
informative of category identity, and therefore fixated next. These re-
sults are important and suggestive, but as stated by the authors them-
selves, because they are based on overt eye movements, they are limited
in their implications regarding the role and dynamics of covert visual
attention.

4. The present study

In this article we report two experiments designed to examine the
idea that object recognition is an interactive iterative process, in which
hypotheses about probable object identity drive the allocation of at-
tention to the relevant distinguishing features, and if necessary, redirect

attention to additional distinguishing features in an iterative manner
until a specific hypothesis is confirmed. This general proposition was
examined in two different object recognition (categorization) tasks,2 in
which the initially extracted information is limited, either because the
relevant distinguishing features are subtle and spatially disparate (and
therefore cannot be extracted all at once; Experiment 1), or because the
most discriminable distinguishing feature is sometimes occluded (Ex-
periment 2). We used a secondary visual-probe detection task (Baruch
et al., 2014), with probes presented at several different SOAs, to ex-
amine the dynamics of visual attention in each of these situations.

4.1. General method

In both experiments, stimulus presentation and data collection were
driven by a computer workstation with 17″, 1024×768 resolution
monitor.

4.1.1. Recognition task
The object stimuli were two-dimensional line drawings of fish,

adopted from Sigala and Logothetis (2002). These artificial objects
allow maximal experimental control over the object features, and hence
enable precise predictions regarding the dynamics of attention in the
object recognition task, yet they represent natural objects. The fish have
four local shape features: Mouth (M), Tail (T), Dorsal Fin (DF) and
Ventral Fin (VF), with three values each (Fig. 1). They also have ad-
ditional features such as texture and color. In each experiment, a subset
of the features was used to define (implicitly) different types of fish,
whose names were chosen to sound like real fish names (e.g., Grout or
Tass).3 On each trial, a specific instance of a fish, belonging equally
often to one of the relevant fish types, was presented at the center of the
screen. Participants were required to recognize the type of fish and
instructed to respond with the appropriate key press as rapidly and
accurately as possible. The fish remained on the screen until the par-
ticipant responded. A short low-frequency audio tone was provided as
feedback on incorrect response trials.

4.1.2. Secondary probe-detection task
Our basic research strategy was to use the pattern of allocations of

attention in a controlled situation as a window into the dynamics of the
processes that underlie object recognition. To examine this pattern, in

Fig. 1. Examples of fish stimuli used in the experiments.
The fish have four basic feature variables: Mouth (M), Tail
(T), Dorsal Fin (DF) and Ventral Fin (VF), with three values
each.

2 In line with the general theoretical framework promoted in this article, object re-
cognition and object categorization tasks are treated as essentially equivalent—both in-
volve identifying a presently viewed visual stimulus as an instance of a particular object
type or category, from among a set of expected-probable object types or categories. This
point will be addressed further at the beginning of the General Discussion section.

3 Although highly advantageous in terms of experimental control, the use of object line
drawings with well-defined visual features may raise concerns regarding the general-
izability to more naturalistic recognition situations, which are inherently more “noisy”
both in the overall visual data and in the distinguishing features themselves. To partly
address this issue, in a previous study (Baruch et al., 2014,) we included an experiment
using photographs of real sea mammals (seals, sea lions and sea elephants). The results of
that experiment showed that the allocation of attention to distinguishing features also
holds for the categorization of pictures of natural objects despite substantial within-ca-
tegory variation in physical characteristics, posture, viewing angle, and more. In addition,
post-session interviews revealed that in distinguishing seals from sea lions, none of the
participants were able to explicitly verbalize the distinguishing feature to which they
were actually attending.
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parallel to the primary object recognition task, a secondary probe de-
tection task was used, combined with a manipulation of probe SOA. In
addition to the fish object that was displayed until the participant’s
recognition response, on half of the trials a visual probe was displayed
briefly next to one of the fish features at one of several different SOAs.
Participants were instructed that their primary task was to identify the
presented type of fish by pressing the appropriate key. If they noticed a
probe, however, they were instructed to indicate the presence of the
probe by pressing the recognition key twice (“double press”) rather
than once. This double-press response method (taken from Baruch
et al., 2014) is designed to reduce any potential conflict that might arise
when providing two separate responses at once: There is no confusion
regarding the order of responses or which keys to press—the selected
recognition key is either pressed once, indicating the recognition re-
sponse alone, or double-pressed (similar to double-clicking a mouse),
indicating both the recognition decision and that a probe was detected.
The probes themselves, which differed between the two experiments,
were designed such that (a) their onset and offset would not capture
attention, and (b) their detection would be very difficult when they
appeared outside the focus of attention. Thus, observed changes in
probe detection rate at particular feature locations at particular SOAs
could be used to track changes in the allocation of spatial attention
between the different fish features during the course of the recognition
process.

4.1.3. Training phase
Both experiments included a training phase at the beginning of the

experiment. The training phase was used to familiarize the participant
with the types of fish relevant to the experiment, the corresponding
response keys, and the secondary probe-detection task, including
single- versus double key presses. In order to facilitate learning of the
dual recognition and probe-detection tasks, probes appeared on 80% of
the trials in the training phase. In both experiments, this phase ended
when the participant had completed at least 60 trials and made no more
than two recognition errors on 20 consecutive trials (i.e., 90% accu-
racy).

In both experiments, the training phase was followed by an addi-
tional block of practice trials that were identical to the experimental
trials in all respects.

4.1.4. Participants
The participants in both experiments were undergraduate students,

all with normal, or corrected to normal vision. The chosen sample sizes
were found to be sufficient to reveal the relevant effects in a previous
study (Baruch et al., 2014) using similar methods in a completely
within-participants design. Different participants were included in each
experiment.

5. Experiment 1

This experiment examined the dynamics of the allocation of atten-
tion in an object recognition task in which the visual information that
could be derived in a single glance would be insufficient to conclusively
identify the object. This situation was created by defining four different
types of fish that varied in three distinguishing features: one indicating
the general family (salt-water, fresh-water), and one of the two other
features indicating the specific type of fish within each category (see
Fig. 2). The three distinguishing features were the shapes of the dorsal
fin (DF), mouth (M), and tail (T). A fourth feature, the shape of the
ventral fin (VF), was unrelated to object identity. Because the three
local distinguishing features were subtle and spatially disparate, we
expected that attention would need to be focused sequentially in order
to extract all of the relevant visual information. Furthermore, by or-
ganizing the four specific types of fish using a nested family structure
(see also Blair et al., 2009, Experiment 2), we created a situation in
which there was an optimal sequence of attentional allocations that
would minimize the number of distinguishing features that need to be
examined in order to conclusively identify each fish: There was one
“pivot” feature, the DF, whose value determined the general family
(freshwater or saltwater) the fish belonged to, and accordingly, which
of the other two potential distinguishing features (mouth or tail) was in
fact diagnostic of the identity of the presented fish. Therefore, assuming
that only one feature can be attended at a time, the most efficient al-
gorithm would be to direct attention initially to the DF, and then, ac-
cording to its value (shape), shift attention to the second relevant dis-
tinguishing feature (mouth or tail) whose value would conclusively
identify the fish (see Fig. 3). It is assumed that in general, the visual
system learns the most efficient “algorithm” for recognizing an object,
and that the same “algorithm” is used each time the object is observed.
The latter assumption is in line with results indicating that the pattern
of saccadic eye movements tends to be repeated by a specific observer
when inspecting a given object (Yarbus, 1967)

Note that in the present case, because the subsequent shift of at-
tention to a particular distinguishing feature depends on the value of
the initially attended feature, the optimal sequence of attentional al-
locations involves an iterative interaction between bottom-up and top-
down processes. Alternatively, however, the fish recognition task could
also be performed by testing the distinguishing features in a random or
arbitrary sequence, in which case two or three attentional fixations
would be needed, depending on the order in which the features are
examined and the particular type of fish that is presented. Finally, if we
are wrong in our assumption that focused attention is needed to extract
the relevant information at each feature location, two or perhaps all
three distinguishing features might be examined simultaneously, under
spatially spread attention.

Fig. 2. Example of the outlines of fish stimuli that were used in
Experiment 1. Freshwater fish (concave DF) are distinguished from
saltwater fish (convex DF) by their DF. Freshwater fish (“Grout” and
“Tass”) are distinguished by their tail (T pointed or rounded);
Saltwater fish (“Fole” and “Derch”) are distinguished by their mouth
(M upturned or downturned).

O. Baruch et al. Cognition 170 (2018) 228–244

231



As described earlier, a secondary variable-SOA probe detection task,
performed together with the primary fish recognition task, was used to
assess these different possibilities. For half of the presented fish, the
probe appeared at one of the four feature locations (DF, VF, M, T) at one
of four fish-probe SOAs, ranging from 0ms to 450ms. In this experiment,
the probe was a single red square appearing among a large number of
green squares and red and green Xs that comprised the “texture” of each
fish (to prevent capture of attention by probe onset/offset, the red or
green color was added to all texture elements simultaneously, which
were otherwise colored gray; see Fig. 4). Essentially, then, the probe was
a color-shape conjunction target whose detection generally requires
spatially focused attention (Treisman&Gelade, 1980). Hence, we as-
sumed that the probe would be detected only, or primarily, when the
dynamics of attentional allocations in the course of recognizing the fish
caused the focus of attention to coincide with the location of the probe, at
the time the probe was presented.

If, during the course of recognizing each fish, attention is allocated to
the distinguishing features sequentially according to the optimal (inter-
active-iterative) algorithm, an interaction between probe location and SOA
is expected, such that at shorter SOAs probe detection will be best at the
location of the DF (the initially attended, pivot feature), whereas at longer
SOAs it will be best at the location of the other relevant distinguishing

feature (M or T, depending on the family of the fish). Put another way, the
point in time at which the detection rate for probes at the DF is maximal
should correspond to the initial determination of fish family (freshwater/
saltwater), whereas the maximal detection rate for probes at the second
relevant distinguishing feature (M or T) should correspond to the sub-
sequent determination of the specific type of fish. Probe detection rate at
the VF (which is irrelevant for recognizing the fish) is expected be the
worst overall, and not to vary with SOA (see Fig. 5).

Alternatively, if attention is allocated to the three distinguishing
features serially but in no particular order (or in parallel), probe de-
tection performance should be similarly high at those three locations
compared to the VF location, regardless of SOA. The latter pattern of
results would not support the hypothesis of interactive-iterative pro-
cessing, but would serve as additional support for the hypothesis that
attention is directed to distinguishing features during the course of
object recognition (Baruch et al., 2014).

5.1. Method

5.1.1. Participants
Eleven students at the University of Haifa, participated in the ex-

periment. All had normal or corrected to normal vision.

Visual Information 

Attention to M 

Visual Information Visual Information 

H: Freshwater or  
     Saltwater fish 

Expectations 

Attention to DF 

Visual Information 
Attention to T 

H: Derch or Fole H: Grout or Tass Concave?
yesno 

Pointed down? Pointed? 
yes yesnono 

TUORGSSATHCREDELOF

Fig. 3. Schematic diagram of the predicted in-
teractive-iterative fish recognition process in
Experiment 1. The initial hypothesis (H: the fish is
either saltwater or freshwater) initiates top-down
direction of attention to the most informative
feature, DF. Visual information extracted from the
attended DF feature evokes a more refined hy-
pothesis regarding a specific fish category,
leading to top-down direction of attention to the
relevant additional diagnostic feature (M or T).
The visual information extracted by attending to
this feature is sufficient to recognize the specific
type of fish. Note that given the nested hier-
archical organization of the stimulus set, initial
attention to the DF “pivot” feature ensures that
only two attentional fixations are required to
achieve recognition.

Fig. 4. Examples of gray and corresponding colored textured fish
stimuli used in Experiment 1. The fish were initially displayed in gray
(panel a), after which color was added for 400ms (panel b), after
which the display returned to gray. The red square element located
near the mouth in panel b, is an example of the color-shape con-
junction probe used in the secondary probe-detection task. (For in-
terpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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5.1.2. Stimuli
The objects used in this experiment were 2-D textured line drawings

of artificial fish, organized into two families, with two types of fish in
each family (see Fig. 2). Family membership was distinguished by a
single “pivot” feature, the shape of the dorsal fin (DF): freshwater fish
sharing a concave DF and saltwater fish sharing a convex DF. The two
different types of freshwater fish (Grout and Tass) were distinguished
further by the shape of their mouth (M), whereas the two different types
of saltwater fish (Derch and Fole) were distinguished further by the
shape of their tail (T). A fourth feature, the shape of the ventral fin (VF),
varied randomly without regard to the type or family of fish. By this
scheme, each specific type of fish was defined by the conjunction of
values of two different distinguishing features: the pivot feature (DF)
and either T or M, depending on fish family (i.e., on the value of DF).

All fish stimuli subtended a visual angle of 8.3° in height and 10° in
width. A surface texture was added to the fish by filling their contours
with a random array of small ‘x’ and square elements (each subtending
0.3° height and width, and a 0.1° spacing between the elements). The
fish and its texture elements were first presented in gray (on a black
background), then, at a selected SOA and for a limited duration (see
Design and Procedure), color was added to the texture elements, after
which they returned to gray. When colored, each ‘x’ element was co-
lored either red or green, equally often. On half of the trials (probe-
absent trials), all square elements were colored green; on the remaining
(probe-present) trials, all square elements were colored green except for
one, the probe, which was colored red. When present, the probe element
appeared equally often at one of the four fish feature locations: M, T, DF
or VF. Regardless of the specific shape (value) of the relevant feature,
the probe element was presented on the central axis (aligned with the
center of the screen/fish), no more than four elements away from the
fish shape contour on the x-axis (in the case of M and T) and on the y-
axis (in the case of DF and VF).

5.1.3. Design and procedure
The primary task in this experiment was recognition of the pre-

sented fish, with each type of fish presented equally often. Each trial
began with the display of a small fixation cross at the center of the
screen for 500ms, followed by the display of a gray textured fish on a
black background at the center of the screen in either a left or right
orientation, counterbalanced across participants. At one of four possible
SOAs (0, 150, 300 and 450ms) the display of the gray fish was replaced
by the display of an identical textured colored fish for 400ms, after
which the fish returned to gray and remained until the participant re-
sponded (Fig. 6). On 50% of the trials at each SOA, a red-square con-
junction probe was present during the colored period, appearing
equally often at one of the four fish feature locations. Participants made
their recognition response by pressing one of two keys with the right
hand for “Grout” or “Tass” and one of two keys with the left hand for
“Derch” or “Fole,”4 double-pressing the key to additionally indicate the
detection of a probe. Audio feedback was provided after a recognition
error; no feedback was provided for missed or falsely detected probes.

The experiment employed a three-way factorial within-subjects
design: 2 (family relationship: saltwater fish/freshwater fish)× 4
(probe location)× 4 (probe SOA). A training phase (see General
Method) was administered at the beginning of the experiment to fa-
miliarize the participants with the different types of fish, the secondary
probe-detection task, the response keys, and the single-press (recogni-
tion only) and double-press (recognition+probe detected) response
types. Following that, 30 additional practice trials preceded the first
block of experimental trials. There were a total of 2048 experimental
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----- Pivot feature 
- - - Second Distinguishing 
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Fish-family 
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SOA Object 
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Fig. 5. Predicted probe detection rate in Experiment 1 as a function of
probe location and SOA. Probe detection rate is expected to rise in-
itially at the pivot feature until the fish family is identified. It is then
expected to decrease at the pivot feature and show a simultaneous
increase at the location of the second relevant distinguishing feature
(according to fish family) until the specific type of fish is recognized.
The detection rate at irrelevant features is expected to remain con-
stant and low. The heavy solid and dashed lines represent the main
predictions.

500 ms 

     0, 150, 300, 450 ms 

         400 ms 

Until response 

Fig. 6. The sequence of trial events in Experiment 1.

4 As pointed out by a reviewer, the mapping between fish categories and response keys
caused the value of the dorsal fin to be informative regarding which hand would be
making the response, as well as whether the mouth or tail would be the other relevant
distinguishing feature. This may perhaps have added to the optimality of allocating at-
tention first to the dorsal fin.
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trials, organized into 16 blocks of 128 trials each, with short breaks in
between.

Finally, note that the probe duration used in this experiment
(400ms) is rather long relative to the manipulated differences in probe
SOA (steps of 150ms), causing some degree of overlap, particularly
between probes presented at “adjacent” SOAs. This large overlap was
designed to compensate for individual differences in the time course of
attentional shifts (and in the time needed to detect the probe).
However, it also means that differences in probe detection rates at the
various probe locations as a function of probe SOA can only be used to
gauge the order of attentional allocations at different stimulus locations,
and not the exact timing of these allocations.

5.2. Results and Discussion

5.2.1. Recognition task
Performance in the recognition task was highly accurate, with

88.5% accuracy overall. Recognition accuracy was slightly, though not
significantly, higher for saltwater fish (91.5%) than for freshwater fish
(85.6%), F(1, 10)= 2.3, p= .16, ηp2= 0.19, and was completely un-
affected by the presence (88.6%) or absence (88.5%) of the probe.
Mean RT for correct recognition responses (discarding responses below
200ms or above 3400ms; 5% of all trials) tended to be slower for
saltwater fish (1503ms) than for freshwater fish (1418ms), but this
trend was also nonsignificant, F(1, 10)= 2.4, p= .15, ηp2= 0.20. In
view of the opposing nonsignificant trends for recognition latency and
accuracy, the slight performance differences between the two fish fa-
milies suggest a speed-accuracy tradeoff rather than a true difference in
recognition difficulty. Importantly, correct recognition responses were
faster on probe-absent (1312ms) than on probe-present (1369ms)
trials, F(1, 10)= 7.9, p < .05, ηp2= 0.44). This result indicates that, in
line with the instructions to treat probe detection as a secondary task,
the participants were not actively searching for the probes, in which
case probe-absent responses should have been slower than probe-pre-
sent responses (cf. Treisman &Gelade, 1980). Thus, we assume that any
disruption of the natural process of fish recognition by the secondary
probe-detection task was negligible.

5.2.2. Probe detection
Probe detection rates for each participant were calculated for probe-

present trials on which the recognition response was correct.5 Mean
probe detection rates for the two fish families at the four probe loca-
tions as a function of SOA are presented in Table 1 and plotted in Fig. 7.
The probe detection rates were submitted to a 2 (fish family)× 4
(probe location)× 4 (SOA) repeated measures ANOVA. The analysis
revealed significant main effects of probe location, F(3, 30)= 18.03,
p < .001, ηp2= 0.64, and of SOA, F(3, 30)= 5.04, p < .01,
ηp2= 0.34, and significant interactions between probe location and fish

family, F(3, 30)= 8.79, p < .001, ηp2= 0.47), SOA and fish family, F
(3, 30)= 4.16, p < .05, ηp2=0.29, and probe location and SOA, F(9,
90)= 6.49, p < .001, ηp2= 0.39. Most importantly, the three-way
interaction between fish family, probe location and SOA was sig-
nificant, F(9, 90)= 2.41, p < .05, ηp2= 0.19, indicating that the
probe detection rate at one or more probe locations differed between
the two fish families as a function of SOA. As can be seen in Fig. 7, the
overall pattern is in line with the predictions of the optimal, interactive-
iterative algorithm. For probes appearing at the DF, the pattern of

Table 1
Experiment 1: Mean probe detection rates for the two fish families at the four probe locations as a function of SOA.

Saltwater fish Freshwater fish

Dorsal Fin Mouth Ventral Fin Tail Dorsal Fin Mouth Ventral Fin Tail

SOA (ms) Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

0 74.0 26.6 45.8 28.9 31.4 24.27 58.4 35.1 71.5 22.4 35.5 33.9 27.3 23.4 51.8 33.7
150 77.8 21.9 55.7 29.8 36.6 27.4 52.6 36.8 77.6 20.9 40.4 32.1 36.1 30.1 55.6 34.7
300 69.1 24.4 60.9 23.2 37.7 28.0 52.6 37.4 66.6 21.3 47.2 33.1 35.5 30.1 64.1 33.3
450 64.0 25.9 61.3 27.2 37.2 27.1 53.1 37.6 61.5 24.1 48.8 28.7 44.6 28.7 68.4 24.4

Fig. 7. Results of Experiment 1. Probe detection rates as a function of fish family (panel a
– freshwater fish, panel b – saltwater fish), SOA and probe location (DF- dorsal fin, M –
mouth, VF – ventral fin, T – tail). For both fish families, the pivot feature was the DF,
leading to the initial advantage in probe detection rate at that location. The second re-
levant distinguishing feature depended on the fish family: tail in the freshwater condition
and mouth in the saltwater condition. The VF was irrelevant in both conditions. Error bars
represent± 1 standard error of the within-subject probe-location effect, calculated se-
parately for each SOA and fish family.

5 Probe false-alarm rate (the percentage of falsely detected probes on probe-absent
trials) was very low overall (less than 10% in all experimental conditions; M=6.5%
across all conditions) and there were no significant differences or interactions between
conditions on this measure (all Fs < 1.3).
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detection rate as a function of SOA was similar in both fish families, as
expected by its role as the pivot feature, but the pattern of detection
rate for probes at the mouth and tail as a function of time differed
between the two fish families, as expected by the different role of these
two features (diagnostic or undiagnostic) in the different fish families.

Examining the three-way interaction in more detail confirmed that
for both fish families the detection rate for probes at the DF displayed a
similar pattern of change in detection rates over time: Across the two
fish families, detection rate was at an intermediate level (72.8%) at
SOA=0, increasing to its maximum level (77.7%) at SOA=150ms, F
(1, 10)= 4.9, p < .05, ηp2= 0.33, followed by a decrease (to 68%) at
SOA=300ms, F(1, 10)= 15.2, p < .01, ηp2= 0.60, with a further
decrease (to 62.9%) at SOA=450ms, F(1, 10)= 5.8, p < .05,
ηp2= 0.37. Moreover, for both fish families, the decrease in detection
rate at the later SOAs for probes appearing at the DF was accompanied
by a corresponding increase in detection rate for probes appearing at
the location of the other relevant distinguishing feature (family de-
pendent: M for saltwater fish, T for freshwater fish). Across the two fish
families, detection rate at the family-dependent distinguishing feature
was higher at SOA=300ms (63.3%) than at SOA=150ms (56.1%), F
(1, 10)= 11.47, p < .01, ηp2= 0.53, and there was a further increase
between SOA=300ms (63.3%) and SOA=450ms (64.7%), F(1,
10)= 19.4, p= .001, ηp2= 0.66. This overall shift of attention from
the pivot feature to the family-dependent distinguishing feature over
time was also observed in specific contrasts conducted separately for
each fish family, as indicated by a significant interaction between probe
location (DF vs. M) and SOA for saltwater fish, F(2, 20)= 7.67,
p < .01, ηp2= 0.48, and a corresponding interaction between probe
location (DF vs. T) and SOA for freshwater fish, F(2, 20)= 12.19,
p < .001, ηp2= 0.55.

Finally, as expected, for both fish families the detection rate of
probes located at the VF was lower than the rate observed at the other
(distinguishing) feature locations, at all SOAs. Also as expected, for the
saltwater fish there was no significant change in VF probe detection rate
as a function of SOA, F(3, 30)= 1.4, p= .25, ηp2= 0.13. The un-
expected increase with SOA observed for the freshwater fish, F(3,
30)= 5.7, p < .05, ηp2= 0.36, may be a consequence of the relative
proximity of the VF and tail shape contours (see Fig. 2), and hence,
some small benefit for the detection of VF probes ensuing from the
spillover of attention to the tail feature (at the later SOAs) on the
freshwater-fish trials.

Another small anomaly in the results is worth noting. On fresh-
water-fish trials, in addition to the expected increase in probe-detection
rate at the later SOAs for probes appearing at the tail (the distinguishing
feature that should be examined after discerning the shape of the DF
pivot feature), a similar increase in probe-detection rate was also ob-
served for probes appearing at the location of the irrelevant mouth
feature (see Fig. 7), though the absolute levels of probe detection were
much lower for the mouth (43.0%) than for the tail (59.9%), F(1,
10)= 13.1, p < .01, ηp2= 0.57. The unexpected increase in probe
detection rate at the irrelevant mouth feature may reflect a “noisy”
implementation of the optimal algorithm, with the initial allocation of
attention to the DF being followed, on a relatively small proportion of
trials, by an erroneous shift of attention to the mouth rather than to the
tail. If so, this apparently occurred less often when the DF pivot feature
indicated that the stimulus was a salt-water fish, as there was no cor-
responding increase in the detection of probes appearing at the location
of the irrelevant tail feature on salt-water fish trials.

In sum, the results of Experiment 1 provide evidence indicating that
object recognition may involve, when necessary or expedient, an
iterative interaction between bottom-up and top-down processing. The
overall pattern of attentional allocations observed in this experiment is
consistent with the (somewhat noisy) implementation of an interactive-
iterative recognition algorithm, in which the initial allocation of at-
tention to one highly diagnostic “pivot” feature is used to narrow down
the hypotheses regarding object identity, and on that basis, shift

attention to a further diagnostic feature that can conclusively identify
the object. Similar results using eye movements to track overt attention
were reported by Blair et al. (2009) in the context of category learning,
and the findings of the present experiment can be seen to augment
those results: Beyond the difference in the method used to track at-
tention, the stimuli used by Blair et al. (2009) were “amoeba-like”
objects spanning a visual angle of 24° (compared to 10° here), and the
average time required to categorize each object was on the order of
several seconds. It is reasonable to assume that the stimulus sizes and
recognition latencies in the present study are more representative of
everyday object recognition.

6. Experiment 2

The results of Experiment 1 indicate that object recognition may
involve the interactive-iterative allocation of attention to distinguishing
features when these features are spatially distributed, and in particular,
when the value of one of these features constrains the object hypotheses
to a particular object category, and by doing so, determines which of
the remaining object features should be examined next. The aim of
Experiment 2 is to examine a different general type of situation that
similarly calls for an interactive-iterative recognition process.

As discussed earlier, in natural scenes there are many situations in
which the initial information that can be extracted quickly and easily
from the visual input may be insufficient to conclusively identify a
particular object. Such a situation may occur, for example, when the
object is partly occluded. If the critical information needed to recognize
the object is completely hidden from view, one may need to move one’s
head, reposition one’s body, or remove the obstruction in order to im-
prove the amount and quality of relevant visual information. In other
cases, sufficiently diagnostic information may remain in the occluded
image, but this may not be the information that is typically used as the
basis for recognition, and its extraction may require additional scrutiny.
To illustrate, if we assume (for the purpose of this example) that an
elephant is typically recognized by its overall size and shape, color, and
the presence of a trunk, when encountered in its natural habitat some or
all of these features may be fully or partly occluded (see Fig. 8). In such
a case, although a tentative hypothesis of “elephant” may direct one’s
attention, say, to the expected location of the trunk, when this fails to
yield the expected diagnostic information, recognition may then need
to be based on (and attention redirected to) other, generally less salient
features, such as the size and shape of the legs and the texture of the
skin.

In the present experiment we examined the idea that different object
features are given different priorities in the recognition process, de-
pending on their diagnostic value and perceptual discriminability, and
that adjustments to these priorities are made “online” in an interactive-

Fig. 8. Example of partial occlusion in a natural scene.
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iterative manner, according to the visual data limitations encountered
in specific situations. To that end, the dynamics of the recognition
process—and the corresponding dynamics of attentional allocation in
that process—were examined in a situation in which one of two equally
diagnostic but differentially discriminable distinguishing features was
sometimes severely degraded due to partial occlusion.

Two types of fish were used in this experiment (see Fig. 9), which
were distinguishable on the basis of either of two local features. One of
these features was relatively easy to discriminate (three vs. four
medium-contrast stripes at the location of the tail), whereas the other
was relatively difficult to discriminate (three vs. four low-contrast
stripes at the location of the mouth).

Since the diagnosticity of the two features was identical, and one
feature (the medium-contrast stripe pattern at the tail) was more per-
ceptually discriminable than the other (the low-contrast stripe pattern
at the mouth), we expected that for the purpose of recognizing each
presented fish, attention would be directed primarily to the stripe
pattern at the tail. On some of the trials, however, this feature was
almost entirely occluded, such that its value (3 stripes or 4 stripes)
became very difficult to discriminate—much more difficult than dis-
criminating the number of stripes in the pattern at the mouth (see
Fig. 8, panel c). On such trials, we envisioned two alternative atten-
tional strategies that might be used to recognize the fish. If the occlu-
sion of the more discriminable stripe pattern at the tail could be de-
tected immediately, without focused attention (e.g., using low spatial-
frequency information; Bar, 2003), then on that basis, participants
might simply direct attention from the start to the (unoccluded) low-
contrast stripe pattern and use that information to recognize the fish.

However, we deliberately designed the occlusion pattern so that it
would be difficult to distinguish from the unoccluded pattern on the
basis of low spatial frequency information alone. This, together with the
fact that the tail pattern was unoccluded and relatively easy to dis-
criminate on two-thirds of the trials (on one third of the trials the mouth
pattern was occluded, and on one third neither pattern was occluded),
led us to expect that attention would initially be directed to the location
of the tail pattern on all trials, but that when this feature was occluded
(i.e., when focused attention at the occluded location failed to yield
diagnostic information), attention would then be redirected to the
generally less discriminable but now more discriminable feature pattern
at the mouth. Fig. 10 presents this expected algorithm for the inter-
active-iterative allocation of attention during the fish recognition pro-
cess.

As a window to the actual dynamics of attention during the course
of recognizing the unoccluded and partly occluded fish, we again used
the variable-SOA visual-probe method. These dynamics were expected
to be reflected in the probe detection rate as follows: On no-occlusion
and mouth-occluded trials, in which the relatively discriminable feature
information at the tail is fully available, attention should be directed
initially to the tail and remain there until the fish is recognized. Thus,
there should be an early advantage in the detection of probes located at
the tail compared to probes located at the mouth, and this difference
should increase at longer SOAs, with probe detection at the tail in-
creasing and probe detection at the mouth decreasing until recognition
is achieved. However, on tail-occluded trials, in which the diagnostic
feature information at the tail is severely degraded, assuming that the
occlusion can only be detected with focused attention to the tail, at-
tention is again expected to be directed initially to the tail (again
yielding initially better probe detection at the tail than at the mouth),
but once the occlusion is detected and attention is consequently shifted
to the mouth, probe detection at the tail should decrease and probe
detection at the mouth should increase until recognition is achieved.
Note that if we are wrong in our assumption that focused attention will
generally be needed to detect the occlusion of the striped feature pat-
tern at the tail, and on such trials attention is in fact allocated directly
to the pattern at the mouth, we would then expect the pattern of probe
detection rates at mouth and tail as a function of SOA to be a mirror
image of the predicted pattern for the no-occlusion and mouth-occluded
trials.

With regard to the actual fish recognition performance, we also
expected slower (and perhaps less accurate) recognition responses on
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Fig. 9. The fish stimuli used in Experiment 2. The type of fish could be identified based on
the number of stripes (3 or 4) comprising either of the two feature patterns—one located
at the mouth (low-contrast pattern) and the other located at the tail (medium-contrast
pattern).
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Fig. 10. Schematic diagram of the predicted interactive-iterative fish
recognition process in Experiment 2. The initial hypothesis (H: fish is
either Grout or Tass) initiates top-down direction of attention to the
tail—the location of the generally more discriminable, medium-con-
trast stripe feature. Visual information extracted at the attended lo-
cation provides either diagnostic information (i.e., the number of
stripes) that enables recognition of the fish, or alternatively, indicates
that the stripes are occluded (i.e., diagnostic information is unavail-
able or highly degraded). In the latter case, attention will be shifted in
a top-down manner to the generally less discriminable (but equally
diagnostic) low-contrast stripe feature at the mouth of the fish. Note
that this algorithm assumes that (a) extracting the number of stripes in
either feature pattern requires focused attention, and (b) the partial
occlusion of the stripe pattern at the tail (or at the mouth) cannot be
detected without focused attention (see underwater scene examples in
Fig. 11).
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tail-occluded trials than on no-occlusion and mouth-occluded trials.
Slower responding on tail-occluded trials might simply stem from the
lower discriminability of the stripe feature pattern at the mouth, and
thus be observed even if attention is initially directed to the mouth on
such trials. However, it might also stem from the predicted additional
attentional iteration, as attention is shifted first to the tail and then to
the mouth once the occlusion of the tail is detected. The probe-detec-
tion results will allow us to decide between these two possibilities.

6.1. Method

6.1.1. Participants
Twelve students at the University of Haifa, participated in the ex-

periment. All had normal or corrected to normal vision.

6.1.2. Stimuli
The objects for the recognition task in this experiment were 2-D

gray (RGB [200,200,200]) line drawings of artificial fish. There were
two types of fish, “Tass” and “Grout,” distinguishable both by the
number of stripes (three vs. four, respectively) in a feature pattern lo-
cated at the tail, and by the (same) number of stripes (three vs. four,
respectively) in a feature pattern located at the mouth. The stripes
comprising the tail feature appeared in an intermediate-contrast gray
(RGB [150,150,150]) whereas the stripes comprising the mouth feature
appeared in a low-contrast gray (RGB [190,190,190]), and therefore
were more difficult to perceive (see Fig. 9).6 The two feature patterns
were equidistant from the center of the fish.

The fish, subtending 11°× 9°, were embedded in an underwater
scene (black background, subtending 13°× 11.3°) that included un-
derwater blue7 plants (see Fig. 11). The hue and brightness of the plants
was varied to create a naturalistic appearance. Three underwater scenes
were used. In one scene, the plants partially occluded the stripes located
at the mouth of the fish (Fig. 11, panel b), in one scene the stripes at the
tail were partially occluded (Fig. 11, panel c), and in one scene there
was no occlusion of distinguishing features (Fig. 11a). Note that al-
though the occlusion was not complete, the relevant diagnostic in-
formation (number of stripes) in the occluded feature pattern became
very difficult, if not impossible, to extract, even under focused atten-
tion. In addition to the plants, the underwater scene included 50
“plankton”—small green square elements subtending 0.3° that onset
and offset asynchronously for random durations (limited by the refresh
rate of the CRT monitor; yielding a “shimmer” effect) at randomly

chosen locations across the scene. The brief onsets and offsets were
designed to mask the onset and offset of the probe.

The probe in this experiment was also a small green square, the
same size as the plankton elements, but in a brighter shade of green
(RGB [0,255,0]). The color of the plankton elements was set initially to
(RGB [0,100,0]) for all participants, but this value was adjusted dy-
namically during the training and practice sessions using a titration
procedure based on each participant’s probe detection rate, such that
the contrast between the plankton elements and the probe was in-
creased when the probe-detection rate in the preceding 10 probe trials
was below 40% and was decreased when the probe-detection rate was
above 60%. The RGB value at the end of the practice trials was used as
the fixed value for all of the subsequent experimental trials. Across the
12 participants, the RGB value of the plankton elements used on the
experimental trials varied between RGB (0,70,0) and RGB (0, 120,0),
with an average of RGB (0,93,0).

6.1.3. Design and procedure
The primary task in this experiment was recognition of the pre-

sented fish, with each type of fish (Grout or Tass) presented equally
often. Each trial began with the display of a central fixation cross for
500ms, which was replaced by the display of a fish embedded in an
underwater scene (including the vegetation and small green squares of
plankton) at the center of the screen. The fish (and corresponding
scene) were presented facing left or right equally often. Scenes re-
presenting the three occlusion conditions (tail occluded, mouth oc-
cluded, or no occlusion) were presented equally often, randomly in-
termixed within blocks. Immediately following scene onset, the green
plankton squares began to “shimmer” (as described earlier) until the
end of the trial. On 50% of the trials, at one of five SOAs (0, 80, 160,
240 or 320ms), the bright green probe square was displayed for
100ms, equally often at one of the two probe locations (tail or mouth;
the exact probe location was randomly jittered at each location in a
small rectangular area subtending 0.2°× 0.4°). Participants made their
recognition response by pressing one of two keys, double-pressing the
key to additionally indicate the detection of a probe. Audio feedback
was provided after a recognition error; no feedback was provided for
missed or falsely detected probes.

The experiment employed a three-way factorial within-subjects
design: 3 (occlusion condition: no occlusion, tail occluded, mouth oc-
cluded)× 2 (probe location: mouth, tail)× 5 (probe SOA). As in the
previous experiment, both a training phase (80% probe-present trials)
and an additional block of practice trials (50% probe-present trials)
were administered at the beginning of the experiment. In this experi-
ment, however, the practice block included 60 trials instead of 30, and
both the training and practice trials were used to adjust the contrast
between the probe and distractor plankton squares by the titration
method, described earlier. There were a total of 1500 experimental
trials, organized into 7 blocks of 200 trials each and a last block of 100
trials, with short breaks in between.

6.2. Results and discussion

6.2.1. Recognition task
Performance in the recognition task was highly accurate with

94.88% accuracy overall. A one-way (occlusion condition: none,

Fig. 11. Examples of the underwater scenes used in
Experiment 2: (a) no occlusion of distinguishing features (b)
heavy occlusion of the striped feature pattern at the mouth;
(c) heavy occlusion of the striped feature pattern at the tail.

6 One might be concerned that the two feature patterns differed not only in perceptual
discriminability but also in visual saliency, in which case attention might be drawn to the
tail feature pattern automatically, in a bottom-up manner. To check this possibility, visual
saliency maps were produced (using the “Saliency Toolbox”; Walther & Koch, 2006) for
960 randomly selected displays from each occlusion condition (including random vege-
tation-plankton configurations). The location of the tail feature pattern was identified as
the most salient visual area on only 19.4%, 22%, and 17.7% of the maps in the no-
occlusion, mouth-occluded, and tail-occluded conditions, respectively. The corresponding
percentages for the mouth feature pattern were 21%, 17.1% and 27.9% respectively.
Particularly noteworthy is the finding that the location of the tail feature pattern was
actually identified as the most salient visual area somewhat less often than was the lo-
cation of the mouth feature pattern, both in the no-occlusion and in the tail-occluded
conditions.

7 For interpretation of color in Figs. 11 and 13, the reader is referred to the web version
of this article.
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mouth, tail) repeated measures ANOVA conducted on recognition ac-
curacy data in the no-probe trials, revealed a significant effect of oc-
clusion condition, F(2, 22)= 8.35, p < .01, ηp2= 0.43. Participants
correctly recognized the fish on 95.8% of the trials in the no-occlusion
condition, on 95.7% in the mouth-occluded condition and on 93.1% of
the trials in the tail-occluded condition. Further analysis showed a
significant difference between the tail-occluded condition and both the
no-occlusion and mouth-occluded conditions, F(1,11)= 11.66,
p < .01, ηp2= 0.52, and F(1, 11)= 10.29, p < .01, ηp2= 0.48, re-
spectively. There was no significant difference between the no-occlu-
sion and the mouth-occluded conditions, F < 1. As in Experiment 1,
recognition accuracy was unaffected by the presence (94.5%) or ab-
sence (95.1%) of the probe.8

Similarly, analysis of the RT data (discarding responses below
200ms or above 2000ms; 4% of all trials) revealed a significant effect
of occlusion condition, F(2, 22)= 138.59, p < .001, ηp2= 0.93). The
mean RT was 911ms in the no-occlusion condition, 904ms in the
mouth-occluded condition and 1139ms in the tail-occluded condition.
Further analysis showed no difference between the no-occlusion con-
dition and the mouth-occluded conditions, F < 1. However a highly
significant difference was found between the tail-occluded condition
and both the no-occlusion and mouth-occluded conditions, F(1,
11)= 159.89, p < .001, ηp2= 0.94 and F(1, 11) = 174.16, p < .001,
ηp2= 0.94, respectively).

Thus, as expected, the recognition process in the tail-occluded
condition was slower and less accurate than in the no-occlusion and
mouth-occluded conditions, which did not differ from each other. The
finding of equivalent recognition performance in the no-occlusion and
mouth-occluded conditions (i.e., regardless of whether the distin-
guishing feature information was available at the mouth) is consistent
with the expectation that the recognition process would be based pri-
marily on the more perceptually discriminable feature information at
the tail, whenever that information is available (not occluded). As
discussed earlier, slower (and less accurate) recognition in the tail-oc-
cluded condition than in the other two conditions could simply reflect
the extra time needed to extract the diagnostic information from the
low-contrast stripe pattern at the mouth. However, it might also reflect
the time needed for an additional attentional iteration, as attention is
shifted first to the tail and then to the mouth once the occlusion of the
tail is detected. Examination of the probe-detection results will yield
further light on this possibility.

6.2.2. Probe detection
Probe detection rate was calculated for all probe-present trials on

which the recognition response was correct.9 Probe detection rates at

mouth and tail locations as a function of SOA for the three occlusion
conditions are presented in Table 2, and plotted in Fig. 12.

The probe detection rates were submitted first to a 3 (occlusion
condition: none, mouth, tail) × 2 (probe location: M, T)× 5 (probe
SOA: 0, 80, 160, 240, 320ms) repeated measures ANOVA. The analysis
revealed a significant effect of probe location, F(1, 11)= 67.1,
p < .001, ηp2= 0.86, a significant effect of SOA, F(4, 44)= 17.56,
p < .001, ηp2=0.62, and significant interactions between probe loca-
tion and SOA, F(4, 44)= 6.05, p= .001, ηp2= 0.36, occlusion condi-
tion and SOA, F(8, 88)= 2.6, p < .05, ηp2= 0.19, and occlusion
condition and probe location, F(2,22)= 51.36, p < .001, ηp2= 0.82.
Importantly, a significant three-way interaction was found, F(8,
88)= 5.43, p < .001, ηp2= 0.33, indicating different patterns of
probe detection rates at the different probe locations as a function of
SOA in the different occlusion conditions. Inspection of Fig. 12, panels a
and b, reveals that, as predicted, the observed pattern in the mouth-
occluded and the no-occlusion conditions, in which the relatively dis-
criminable tail feature is not occluded, is very similar, as reflected in the
nonsignificant interaction between occlusion condition (no-occlusion
vs. mouth-occluded), probe location, and SOA, F(4, 44)= 1.66,
p= .11, ηp2= 0.13. The pattern in these two (tail not occluded) con-
ditions, however, is quite different from the one observed in the tail-
occluded condition (Fig. 12, panel c), as reflected in the highly sig-
nificant interaction between occlusion condition (tail-occluded vs.
mean of mouth-occluded and no-occlusion), probe location, and SOA, F
(4, 44)= 9.95, p < .001, ηp2= 0.48.

Given the equivalent patterns observed in the no-occlusion and
mouth-occluded conditions, and because our primary interest is in
comparing the pattern of attentional allocation in the no-occlusion
condition (in which diagnostic object information is available at both
feature locations) to the corresponding pattern in the tail-occluded
condition (in which the more perceptually discriminable diagnostic
information at the tail is temporarily unavailable), we will confine a
more detailed analysis of the individual patterns to these latter two
conditions.

Beginning with the no-occlusion condition (Fig. 12, panel a), there
was a significant main effect of probe location, F(1, 11)= 139.54,
p < .001, ηp2= 0.93, with a higher detection rate at the tail than at the
mouth for all SOAs. Interestingly, there was already a probe-detection
advantage at the tail at SOA=0ms, F(1, 11)= 9.53, p= .01,
ηp2= 0.46. Probe detection rate then increased at SOA=80ms, both
at the mouth location, F(1, 11)= 16.83, p= .002, ηp2= 0.61, and at
the tail location, F(1, 11)= 5.35, p < .05, ηp2= 0.33. At this point,
probe detection rate at the tail continued to increase with increasing
SOA, reaching a maximal value at SOA=240ms and then leveling
off—an increase that was mirrored by a corresponding decrease in

Table 2
Experiment 2: Mean probe detection rates at mouth and tail locations as a function of SOA for the three occlusion conditions.

No occlusion Mouth occluded Tail occluded

Mouth Tail Mouth Tail Mouth Tail

SOA (ms) Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

0 30.8 15.9 51.9 24.4 24.0 16.6 54.67 20.1 29.3 18.7 39.0 18.6
80 55.5 22.8 67.9 25.5 58.1 28.8 76.85 19.2 65.6 18. 9 62.3 23.4
160 42.1 24.7 70.6 18.2 43.2 24.4 80.6 17.0 71.4 23.0 53.5 25.4
240 28.9 20.00 80.3 13.6 41.7 18.6 76.86 19.4 61.0 24.1 55.5 24.1
320 28.0 17.5 76.2 17.3 17.1 14.1 72.5 23.7 60.5 20.5 48.0 17.5

8 However, also as in Experiment 1, correct recognition responses were significantly
faster (by 51ms) in the probe-absent trials compared to the probe-present trials, F(1,
11)=42.91, p < .001, ηp2= 0.80. Once again, this difference is the opposite of what
would be expected if the participants had been actively searching for the probes (cf.
Treisman &Gelade, 1980), indicating that the participants were in fact following the
instructions to treat fish recognition as their primary task.

9 As in Experiment 1, probe false-alarm rate (FAR) was very low overall (less than 11%
in all experimental conditions; M=8.2% across all conditions) and there were no sig-
nificant differences or interactions between conditions on this measure. There was a
nonsignificant trend for higher FAR at the tail (8.6%) than at the mouth (7.8%), F(1,
11)= 3.7, p= .08, ηp2= 0.25; all other Fs < 1.7).
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detection rate at the mouth, reaching its minimum value at
SOA=240ms, before leveling off. These opposing changes in probe
detection rate at the tail and mouth after 80ms are reflected in a sig-
nificant 2-way interaction between probe location and SOA (80, 160,
240, 320ms), F(1, 11)= 8.40, p < .001, ηp2= 0.43.

The finding of a probe detection advantage at the tail at
SOA= 0ms suggests that on some of the trials, by 100ms (the probe
duration) the location (left or right) of the higher-contrast feature
pattern at the tail had been determined and focused spatial attention
had reached that location. Yet, the parallel increase in detection rate
at both the mouth and tail locations between SOA= 0ms and
SOA= 80ms requires explanation. One possibility is that attention
was initially divided between both ends of the fish stimulus until the
location of the higher contrast tail feature could be determined, and

that on the whole, detection of a probe onsetting 80ms after fish-sti-
mulus onset was easier than detection of a probe appearing together
with the fish. By this account, the observed advantage in probe de-
tection at the tail at both of these initial SOAs reflects trials in which
the determination of the location of the higher-contrast tail feature,
and the focusing of attention on that feature, occurred relatively
quickly. An alternative possibility is that on some proportion of trials,
attention was initially directed to the mouth rather than to the tail.
This might stem from a mistake in determining the location of the
higher contrast tail feature on some of the trials, or from some amount
of arbitrariness in the choice of which end of the fish to initially at-
tend. By this account, the observed advantage in probe detection at
the tail at the two shortest SOAs would reflect a more frequent initial
allocation of attention to the tail than to the mouth, with the increase
in this difference at longer SOAs indicating that when attention was
initially allocated to the tail it was maintained there until recognition,
whereas when initially allocated to the mouth, on some proportion of
the trials attention was subsequently redirected to the tail. Overall,
this second account of the results, which includes an unforeseen at-
tentional iteration on some of the trials (shift from mouth to tail when
the more discriminable tail feature is initially mislocated), implies a
“noisy” implementation of the expected algorithm. Note that by both
accounts, because the advantage in probe detection at the tail was also
observed at SOAs that are presumably too short for eye movements,
this indicates that covert (as well as overt) attention was involved in
the extraction of diagnostic feature information at the tail.

Turning now to the tail-occluded condition (Fig. 12, panel c), it can
be seen that even with no diagnostic information available at that lo-
cation, there is still an initial tendency toward higher probe detection at
the tail than at the mouth at SOA=0ms, F(1, 11)= 3.37, p= .09,
ηp2= 0.23, though the difference here only approaches significance (by
a two-tailed test; it is significant by a one-tailed test). Compared to the
corresponding difference at SOA=0ms observed in the no-occlusion
condition, the difference here is numerically (but not significantly)
smaller, F(1, 11)= 2.48, p= .14, ηp2= 0.18, for the interaction,
stemming from a lower detection rate at the tail in the tail-occluded
(39.0%) than in the no-occlusion (51.9%) condition, F(1, 11)= 3.66,
p= .08, ηp2= 0.25. Once again, in the tail-occluded condition there
was a substantial increase in detection rate between SOA=0ms and
SOA=80ms, both at the tail, F(1, 11)= 18.21, p= .001, ηp2= 0.62,
and at the mouth, F(1, 11)= 32.06, p < .001, ηp2= 0.75. Unlike in
the no-occlusion (and mouth-occluded) conditions, however, here there
was no difference in probe detection rates at the tail and mouth loca-
tions at SOA=80ms, F < 1, for the mean difference; F(1, 11)= 4.89,
p < .05, ηp2= 0.31, for the interaction with occlusion condition.
Compared to the no-occlusion condition, this change in the tail-oc-
cluded condition at SOA=80ms stemmed both from a lower detection
rate at the tail (by 5.6%), and from a higher detection rate at the mouth,
(by 10.2%), though neither of these differences individually reached
statistical significance.

The lower tail probe detection rates at the two shortest SOAs in the
tail-occluded compared to the no-occlusion condition suggests either
that contrary to our assumption, the occlusion at the tail could some-
times be detected without focusing attention to the tail (perhaps the
primary cause of the reduction at SOA=0), or that approximately
180ms (80ms SOA+100ms probe duration) was sometimes sufficient
time to allocate attention initially to the tail, detect the occlusion, and
redirect attention to the mouth. Nevertheless, it should be noted that at
these short SOAs, the probe detection rate at the tail in the tail-occluded
condition (51%) was higher than the corresponding detection rate at
the mouth in the mouth-occluded condition (41%), F(1,11)= 10.28,
p < .01, ηp2= 0.48. This relatively high rate of probe detection at the
tail at short SOAs in the tail-occluded condition cannot be explained
simply in terms of initially divided attention, or the arbitrary or mis-
located allocation of focused attention—factors that should be equiva-
lent in the tail-occluded and mouth-occluded conditions. Instead, it

Fig. 12. Results of Experiment 2. Probe detection rates as a function of occlusion con-
dition (panel a – no occlusion, panel b – mouth occluded, panel c – tail occluded), SOA
and probe location (mouth or tail). Error bars represent± 1 standard error of the within-
subject probe-location effect, calculated separately for each SOA and occlusion condition.
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appears that on a substantial proportion of the trials, the occlusion of
the tail pattern was not detectable without focused attention, so that
attention was initially directed to the tail on these trials in a top-down
manner, before being redirected to the mouth once the occlusion was
discovered. Again, because these differences were observed at SOAs
that are too short for eye movements, they indicate that covert focused
attention could be allocated and reallocated very quickly, in an iterative
manner, in response to occlusion of the generally more discriminable
tail feature.

The tendency to direct or redirect attention to the low-contrast
feature pattern at the mouth when the generally more discriminable
information at the tail is temporarily unavailable can also be seen in the
divergent patterns of increasing detection of probes at the mouth lo-
cation and decreasing detection of probes at the tail location between
SOA=80ms and SOA=160ms, F(1,11)= 5.12, p < .05, ηp2= 0.32,
for the two-way interaction. This is precisely the opposite of the pattern
observed in the no-occlusion (and mouth-occluded) conditions, F
(1,11)= 9.01, p < .05, ηp2= 0.45, for the three-way interaction. By
SOA=160ms, probe detection rate was higher at the mouth than at
the tail, F(1,11)= 4.24, p= .06, ηp2= 0.28 (p < .05 by a one-tailed
test), remaining higher across the two longer SOAs, F(1,11)= 1.46,
p= .25, ηp2= 0.18.

Interestingly, however, probe detection rates at the tail also re-
mained relatively high across the interval between SOA= 160ms and
SOA= 320ms, in comparison to the corresponding detection rates at
the mouth in the no-occlusion (and mouth occluded) condition, F
(1,11)= 33.83, p < .001, ηp2= 0.76. Conversely, probe detection
rates at the mouth were substantially lower at the two longest SOAs
(240ms and 320ms) compared to the corresponding detection rates at
the tail in the no-occlusion (and mouth occluded) condition, F
(1,11)= 7.89, p < .05, ηp2= 0.42. These complementary differences
suggest a tendency to continue to allocate some attention to the lo-
cation of the tail feature, presumably after the occlusion of that fea-
ture had already been detected. This tendency might reflect some
degree of perseverance in attempting to extract the occluded (severely
degraded) information from what was generally the preferred feature
location.

In sum, the results of this experiment again support the basic
proposal that object recognition involves, when needed or expedient,
an interactive and iterative allocation of attention to distinguishing
features. They provide an important generalization of the results of
Experiment 1 (and those of Blair et al., 2009), showing that such a
process occurs not only when the objects to be recognized have a
nested categorical structure, but also in response to dynamic changes
in data quality that affect the availability and perceptual discrimin-
ability of the diagnostic information that can be extracted in particular
situations. Moreover, the finding that occlusion condition differen-
tially affected the detection of visual probes appearing at the tail and
mouth locations at the two shortest SOAs (0 ms and 80 ms), which are
too short for eye movements, clearly indicates that these effects were
mediated by differences in the spatiotemporal dynamics of covert at-
tention.

On the whole, the participants in this experiment allocated attention
first to the tail of the fish, where the diagnostic information was gen-
erally easier to extract. When this strategy failed because the tail fea-
ture was occluded, attention was redirected to the mouth of the fish
where the extraction of diagnostic information was generally more
difficult. Thus, information (or lack thereof) extracted during the allo-
cation of attention to one distinguishing feature indicated the need for a
subsequent allocation of attention to a different distinguishing feature.
It may be that on some of the trials the occlusion of the tail feature was
detected initially under divided attention, so that attention could be
allocated directly to the less discriminable feature at the mouth
(without first focusing on the tail). If so, this would imply that on some
of the trials, the allocation of attention during the recognition process
was interactive and iterative (visual stimulus information extracted

under divided attention was used to direct the subsequent extraction of
visual information under focused attention), but the need for an itera-
tive shift of focused attention on such trials could be avoided. In any
case, as in Experiment 1, the participants appear to have been rather
efficient in finding and using an algorithm that minimizes the number
of required attentional allocations and the effort needed to extract the
diagnostic information under each allocation.

7. General discussion

The present work promotes the view of object recognition as an in-
teractive-iterative process in which attention to distinguishing features
plays a crucial role. The experiments were designed at the operational
level using a relatively small number of experimentally defined object
types, thereby gaining a large degree of control over the object feature-
s—both distinguishing and non-distinguishing. Such tasks are typically
treated as object categorization tasks, and the lessons learned using such
tasks are often directed specifically to the categorization and category
learning literatures (e.g., Blair et al., 2009; Rehder &Hoffman, 2005a,
2005b). A basic tenet of the framework advanced here, however (see also
Bruner, Goodnow, &Austin, 1962; Grill-Spector & Kanwisher, 2005;
Meuwese, Loon, Lamme, & Fahrenfort, 2014; Palmeri & Gauthier, 2004;
Schyns & Rodet, 1997; Wagar &Dixon, 2005; Walther & Koch, 2007), is
that object recognition is essentially and fundamentally a matter of ca-
tegorization—a process of discriminating between probable alternatives,
with the set of such alternatives for any particular visual stimulus con-
strained by one’s expectations in a specific context. Indeed, both object
recognition and object categorization tasks, and all computational
models of object recognition, involve identifying a presently viewed vi-
sual stimulus as an instance of a particular object type or category. For
example, as explained by Walther & Koch, 2007, “by object recognition
we mean our visual system’s ability to infer the presence of a particular
object or member of an object category from the retinal image” (p. 57).
This essential equivalence suggests a need for greater cross-talk between
the object recognition and category learning literatures (e.g.,
Palmeri & Gauthier, 2004).

A second basic tenet of the framework, discussed earlier, is that the
initial information extracted from the visual scene in a data-driven
(bottom-up) manner regarding any particular object is inherently par-
tial. In natural scenes, the far sides of objects are hidden from view and
surfaces may undergo occlusion; viewing conditions may be poor, and
the information that is diagnostic of object identity may be subtle and
spatially distributed. Even under optimal viewing conditions, the initial
extracted information may be relatively coarse (carried by low spatial
frequencies, e.g., Bar, 2003; Fabre-Thorpe, 2011). Although, depending
on context and expectations, the initially extracted information may
sometimes suffice for recognition “at a glance” (e.g. Hochstein and
Ahissar, 2002), in other cases object recognition will require additional
processing, and take longer to complete.

Two experiments were conducted in which, by design, the critical
information needed to recognize the object could not be acquired all at
once. Such conditions were created using (a) a nested hierarchy of
spatially distributed distinguishing features (Experiment 1), and (b)
partial occlusion (Experiment 2). In Experiment 1, the general pattern
of attentional allocation as a function of time and location was con-
sistent with the idea that attention is first allocated to the object feature
with highest (expected) diagnostic value, and then, on the basis of the
extracted information, reallocated to the next diagnostic feature in an
iterative manner. A similar overall pattern was observed in Experiment
2: Attention was initially directed to the location where the most dis-
criminable diagnostic information was expected. In some cases, how-
ever, this information was heavily occluded and consequently attention
was redirected to the other diagnostic (but generally less discriminable)
feature to accomplish the recognition task.
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7.1. Interactive-Iterative attentional allocation in object recognition and
categorization

Taken together, the results summarized above support the idea that
in recognizing objects, attention is directed to distinguishing features10

in an interactive and—when needed—iterative manner, depending
both on top-down expectations and on bottom-up constraints stemming
from the availability and quality of stimulus information. That, of
course, is not to say that top-down attention is needed for object re-
cognition in all situations, or that all top-down contributions to object
recognition are attentional. In this study, we emphasized the role of
attention to distinguishing features, and in particular, the potential
need, under certain conditions, for an iterative process of attention to
distinguishing features —a role that has been relatively neglected.
Nonetheless, there are undoubtedly cases in which recognition is
achieved very quickly and easily, perhaps too quickly for top-down

attention to be deployed (e.g., Li et al., 2002; Thorpe et al., 1996; but
see Evans & Treisman, 2005). How should such cases be reconciled?
Should we adopt one specific model of the recognition process for some
situations, and a different specific model for others? We wish to pro-
mote a more parsimonious approach.

Fig. 13 presents a schematic “flow diagram” that instantiates the
principles of the proposed integrative framework, described earlier.
Within this framework, observers never confront a perceptual event
without context-based expectations and world knowledge. These, to-
gether with the visual input (whose extraction and analysis are also
susceptible to top-down influences11), jointly constrain the plausible
hypotheses that need to be considered. When these interacting con-
straints are sufficient to converge on a single hypothesis regarding
object identity, the recognition process may terminate quickly and
immediately on the first pass (cf. Li et al., 2002; Thorpe et al., 1996).
When the initial constraints are not sufficient to converge on a single
“winning” hypothesis, the number of remaining hypotheses that satisfy
the constraints should nevertheless be quite small. These hypotheses
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Fig. 13. A schematic depiction of the proposed integrative framework
for object recognition.

10 It should be noted that in both experiments, all distinguishing features were local
features (pertaining to only a relatively small part of the fish). However, distinguishing
features can also be global or configural features such as texture or shape (see note 1
earlier). Evidence of attention to such features during object recognition cannot be gained
using the spatial probe method, but can be obtained using other methods (see Baruch
et al., 2014).

11 Top-down influences on the extraction and analysis of the visual data itself (e.g.,
Maunsell & Treue, 2006; Summerfield & de Lange, 2014), signified by the left-most top-
down arrow in Fig. 13, are discussed further below.
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might be expressed as the activation of internal representations of
candidate objects, giving special weight to features that discriminate
between the competing hypotheses (i.e., distinguishing features). At-
tention is then directed to these distinguishing features in order to fa-
cilitate (further) the extraction of the relevant visual data.12 Additional
iterations will be invoked (with attention guided to the relevant dis-
tinguishing features), as needed, until one of these hypotheses can be
confirmed.

We believe that this framework is of value in providing a parsi-
monious integration of the types of processing that underlie the entire
gamut of recognition situations: so-called “instantaneous” recognition
at one extreme, very effortful time-consuming recognition at the other
extreme, and the range of situations that lie between. Rather than a
dichotomous conception in which the recognition process is assumed
(incorrectly, in our view) to be entirely bottom-up/feed-forward under
some conditions but interactive and attentional under others, within
this framework object recognition always involves an interaction be-
tween top-down and bottom-up processing, though the nature and re-
lative contribution of each may vary greatly across different recognition
situations.

Some key aspects of this framework—the activation of hypotheses
regarding object identity and the testing of these hypotheses via the
iterative allocation of visual attention to distinguishing features—are
also core components of a theory of object identification put forward by
Ganis and Kosslyn (2007). One difference between Ganis and Kosslyn’s
(2007) proposal and our own, however, concerns the role of context in
determining the features that are relied upon in the object recognition
process. In their proposal, the features that are attended to (and also
primed) in the course of recognizing an object are those that are dis-
tinctive of the object representation that best matches the visual input;
the set of plausible competing alternatives has no effect. The hypothesis
testing process is essentially confirmatory. In contrast, as discussed ear-
lier, in our view object recognition always occurs in context, such that
the set of expected plausible alternatives may influence the diagnosticity
of different potentially distinguishing features. For example, a feature
that is diagnostic for identifying a wolf in a herd of sheep may be of no
use at all for identifying a wolf in a herd of wild dogs. Thus, the hy-
pothesis testing process can be characterized as deciding between com-
peting alternatives rather than as confirming or refuting a single most
likely hypothesis. Evidence for the context sensitivity of distinguishing
features was provided by Baruch et al. (2014): In categorizing different
sets of objects, attention was allocated to different features of the same
object, depending on the diagnosticity of these features with respect to
the overall stimulus set (for further evidence of context-sensitive object
representation, see Schyns &Rodet, 1997; Wagar &Dixon, 2005).

Context sensitive allocation of attention to diagnostic features is
also important with regard to the potential scalability of such a re-
cognition process. In natural situations in which there is a large number
of potential object categories, it is very unlikely that there will be one or
two critical features that distinguish a particular object candidate from
all other possible object categories, as is assumed by Ganis and Kosslyn
(2007). In contrast, as explained earlier, we assume that the initial in-
teraction between top-down expectations and bottom-up visual data
substantially constrains the set of relevant object categories, corre-
spondingly reducing the number of relevant distinguishing features that
must be examined. If further iterations are needed, the set of relevant
categories remaining after each iteration should quickly converge to
one (i.e., the object category that is ultimately chosen).

Interestingly, context sensitive allocation of attention to diagnostic
features, conceptualized as changes in dimension weights, plays an im-
portant role in all major theories of categorization (e.g., Bruner et al.,
1962; Medin & Schaffer, 1978; Nosofsky, 1986; Shepard,
Hovland, & Jenkins, 1961). In many classic category-learning models,
there is a single set of attentional weights for a particular task (Kruschke,
1992; Love, Medin, &Gureckis, 2004; Minda& Smith, 2002; Nosofsky,
1986), an assumption which has been referred to as “task-specific” at-
tention (Blair et al., 2009). Attention is deployed to the most relevant
features for performing the task in the context of its particular stimulus set.
Other theories of categorization, however, allow dimension weights to be
tailored not only for the task as a whole, but for particular stimuli as
well—an assumption referred to as “stimulus-specific” or “stimulus-re-
sponsive” attention (Aha&Goldstone, 1992; Blair et al., 2009; Kruschke,
2001). Whereas task-specific attention implies top-down (task-driven) at-
tention to distinguishing features, stimulus-responsive attention allows
both top-down (task-driven) and bottom-up (stimulus-driven) influences
on the allocation of attention to occur in an iterative manner. Blair et al.
(2009) argued that the primary motivator of stimulus-responsive attention
is efficiency. As discussed earlier, using stimuli with a nested hierarchical
structure similar to those used in Experiment 1 here, they found systematic
temporal patterns in the shifting of eye fixations, such that information
gleaned by previous fixations on distinguishing features dictated which
subsequent distinguishing feature would be most informative, and there-
fore fixated next. As illustrated in Experiment 2 here, however, stimulus-
responsive attention is not just a way of increasing the efficiency of the
process: In many cases one may have no choice but to reallocate attention
to a different diagnostic feature when the initial allocation is not successful
in yielding sufficiently diagnostic information (e.g., because of occlusion).

7.2. Interactive-Iterative processing in the visual system

We now turn to the broader implications of the present work re-
garding the nature of visual processing. Debate concerning the role of
top-down (knowledge driven) and bottom-up (stimulus driven) pro-
cessing in visual perception has a long history. Building on von
Helmholtz’s (1867) notion of “unconscious inference,” the con-
structivist approach to perception (e.g., Epstein, 1973; Gregory, 1966;
Hochberg, 1964; Rock, 1983) has emphasized the role of prior knowl-
edge and “intelligent” thought-like processes in allowing the perceiver
to resolve the presumed inherent ambiguity of visual stimulation. In
strong opposition to this view, Gibson (1966, 1979) put forward the
notion of “direct” perception, positing that all of the information
needed for unequivocal perception of the environment is available in
the visual input (in the form of higher order invariants), so that there is
no need for additional perceptual processing beyond the direct “pick
up” of this information. Although this debate has never been entirely
resolved (see Norman, 2002), one outcome has been greater acknowl-
edgment of the potential richness of the input to the visual system.

In parallel, building on the landmark findings of Hubel and Wiesel
(1962, 1968) regarding the hierarchical organization of the visual
system, a great amount of work in computational vision and neu-
roscience has tested the viability of a strictly bottom-up approach in
attempting to determine how far perceptual processing can go based on
a “feed-forward” analysis of the visual input alone (e.g., Marr, 1982;
Reisenhuber & Poggio, 1999). Yet, advances in our understanding of the
organization of visual processing in the brain (e.g., Albright & Stoner,
2002; Nakamura, Gattass, Desimone, & Ungerleider, 1993;
Tucker & Fitzpatrick, 2003), together with limited success in strictly
bottom-up modeling (see Kveraga et al., 2007),13 has led to increasing
acknowledgement of the need for interactive processing in vision

12 Note that attention can be captured by salient features that are not necessarily the
distinguishing features, in which case a conflict may arise between bottom-up and top-
down attentional control. In an unpublished study, we found that when the saliency and
diagnosticity of object features were placed in competition, recognition latencies in-
creased, but visual probe detection was still higher at the location of the distinguishing
feature than at the location of the salient (or any other) nondistinguishing feature. That is,
in the competition for the allocation of attention, the distinguishing feature “won”.

13 Interestingly, in the categorization literature it appears that it is the inadequacy of a
strictly top-down approach, embodied in the “task-specific” attention models, that has
motivated the development of interactive models (Blair et al., 2009).
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generally, and in object recognition and categorization in particular
(e.g., Bar, 2003; Bullier, 2001; Ganis et al., 2007; Humphreys et al.,
1997; Lee, 2002; O’Reilly, Wyatte, Herd, Mingus, & Jilk, 2013;
Schendan &Maher, 2009; Schendan & Stern, 2008; Ullman, 1995;
Wyatte, Jilk, & O'Reilly, 2014).

Most of these proposals include mechanisms by which top-down
predictions bias the visual data extraction and analysis (left-most green
arrow in Fig. 13) and constrain the probable interpretations of the input
(top-center green arrow in Fig. 13). Such interaction between top-down
and bottom-up processing may be implemented either in a single
feedback pass (e.g., Bar, 2003) or through recurrent processing (e.g.,
O’Reilly et al., 2013; Wyatte, Jilk, & O'Reilly, 2014). Our work joins
these in highlighting the interactive nature of visual processing, but
with two special emphases. First, in most other discussions of inter-
active processing (including Ganis & Kosslyn’s, 2007, iterative atten-
tional theory of object identification, discussed earlier), top-down in-
fluences are conceived as feedback that is triggered by, and therefore as
following, the initial bottom-up analysis of the visual data. By contrast,
in our view, visual processing is cyclic (cf. the “perceptual cycle” put
forward by Neisser, 1976), and if anything, object recognition actually
starts at the top: visual top-down expectations exist, and therefore begin
to exert their influence on the recognition of a particular visual sti-
mulus, even before that stimulus is encountered. Such influences are
clearly seen, for example, in results showing that priming by category
names substantially improves object identification (Reinitz et al.,
1989), that objects are recognized better in expected than in un-
expected contexts (e.g., Bar & Ullman, 1996; Biederman, 1972, 1981),
and that the allocation of attention to distinguishing features is context-
dependent (Baruch et al., 2014).

Second, although we agree that top-down biasing of the visual ana-
lysis may play a significant role in object recognition, a different, rela-
tively neglected aspect of interactive processing was emphasized in the
present work, namely, the iterative allocation of visual attention to dis-
tinguishing object features. Apart from this work, and the two exceptions
mentioned earlier (Blair et al., 2009; Ganis & Kosslyn, 2007), other pro-
posals that have incorporated interactive-iterative allocation of attention
have used it as a means of selecting a specific object in a cluttered scene,
and not as part of the recognition process per se (e.g., Deco& Zihl, 2001;
Hamker, 2006; Rybak, Gusakova, Golovan, Podladchikova, & Shevtsova,
1998; Schill, Umkehrer, Beinlich, Krieger, & Zetzsche, 2001).

7.3. Concluding remarks

This study revived classic ideas (e.g., Gregory, 1966; von Helmholtz,
1867) regarding the interaction of top-down and bottom-up processes
in perception, incorporating them into a framework that explicates the
interactive-iterative nature of the process of object recognition, and the
role of attention in that process. Although similar ideas have been
proposed and discussed by others, a major aim of the present article was
to integrate these ideas into a single coherent and parsimonious fra-
mework, and to provide empirical evidence supporting a key aspect of
this framework (the iterative allocation of attention to distinguishing
features) that has been relatively neglected (see also Baruch et al.,
2014). More generally, this article joins a growing number of studies
emphasizing the inherently interactive nature of the processing that is
carried out in the human visual system.
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