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Abstract
Crowding refers to impaired object identification when presented with other objects, and it is well established that spatial
crowding—crowding from adjacent objects—affects many aspects of visual perception and cognition. A similar interference
also occurs across time—the identification of a target object is impaired when distracting objects precede and succeed it. When
such interference is observed with relatively long interitem intervals it is termed temporal crowding. Thus far, little was known
about temporal crowding and its underlying processes. Particularly it was unknown which aspects of visual processing are
impaired by temporal crowding, and the answer to this question bears critical theoretical implications. To reveal the nature of
this impairment we used a continuous-report task and a mixture-model analysis. In three experiments, observers viewed se-
quences of three oriented items separated by relatively long intervals (170–475ms). The target was the second item in the
sequence, and the task was to reproduce its orientation. The findings suggest that temporal crowding impairs target encoding
and increases substitution errors, but there was no evidence of a reduced signal-to-noise ratio. This pattern of results was similar
regardless of stimuli duration and target–distractor similarity. However, it differed considerably from the pattern found for
ordinary masking and spatial crowding, indicating that temporal crowding is a unique phenomenon. Moreover, the finding that
temporal crowding affected the precision of target encoding even when the items were separated by almost half a second suggests
that visual processing requires a surprisingly long time to complete.
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The ability to identify a target is lower when other items are
also present than when it is presented in isolation; a phenom-
enon termed ‘crowding’. Crowdingwas studied extensively in
the spatial domain—when the target is flanked by other stim-
uli that are presented simultaneously with the target (e.g.,
Bouma, 1970; Ester et al., 2014; Rashal & Yeshurun, 2014;
Strasburger, 2005; Yeshurun & Rashal, 2010; for a review see
Whitney & Levi, 2011). Crowding occurs also in the time
domain—when target identification is impaired by other

stimuli that surround it in time, but only a handful of studies
(Bonneh et al., 2007;Tkacz-Domb & Yeshurun, 2017 ;
Yeshurun et al., 2015) examined temporal crowding in its
‘uncontaminated’ manifestation—when there is no involve-
ment of spatial crowding (i.e., ‘pure’ temporal crowding—
the distractors appear at the same location as the target but
on different time points). Two recent studies (Tkacz-Domb
& Yeshurun, 2017; Yeshurun et al., 2015) used letter stimuli
and a four-alternative forced-choice task requiring identifica-
tion of the target-letter’s orientation. In the crowded condition,
the target and distractors were separated by varying stimulus-
onset asynchrony (SOA), but the target could also appear by
itself (uncrowded condition). Temporal crowding emerged in
both studies: identification deteriorated as the letters were
closer in time (i.e., as the SOA was shorter), and this SOA
effect persisted beyond the limits of ordinary masking (i.e.,
beyond SOAs of 100–150 ms; Breitmeyer, 1984; Breitmeyer
& Ogmen, 2000, 2006; Enns & Di Lollo, 2000; Gorea, 1987;
Enns, 2004). Indeed, performance in the crowded condition
was worse than in the uncrowded condition even with SOAs
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longer than 400 ms. Moreover, temporal crowding was found
even when there was no temporal uncertainty, and although it
was reduced when attention was allocated to the target loca-
tion it was not eliminated.

These long-lasting temporal effects could potentially chal-
lenge the common belief that the representation of visual in-
formation is established very fast, emerging around 150 ms,
and that this is the case with both simple and complex scenes
(e.g., Bankson et al., 2018; Greene&Oliva, 2009; Hung et al.,
2005; Thorpe et al., 1996). However, because so little is
known about temporal crowding, we need to better understand
its characteristics and the processes underlying it, before we
consider how current theories of visual perception may be
modified to accommodate such long-lasting effects. For in-
stance, if the impaired performance demonstrated in previous
temporal crowding studies merely reflects source confusion—
confusion between the representation of the target and that of
the distractors, then this impairment has no bearing on the
assumption that visual representation is generated very fast.
However, if the impairment brought about by temporal
crowding reflects, at least partially, a reduction in the quality
of target representation then this would indeed suggest that
generating a stable representation is considerably slower than
the common belief.

To better understand the nature of the impairment brought
about by temporal crowding, we used a continuousmeasure of
perceived orientation. Specifically, the observer had to rotate a
probe line to assume the perceived orientation of the target,
and the measure of performance was response error—the dif-
ference between the target’s orientation and that reproduced
by the observer. The most commonly used model to analyze
data obtained with such continuous-report tasks is a mixture
model (e.g., Agaoglu et al., 2015; Asplund et al., 2014; Bays
et al., 2009; Ester et al., 2014; Shechter & Yashar, 2021;
Zhang & Luck, 2008). The model used here offers four pa-
rameters that describe the data: (1) The width (sd) of a
Gaussian distribution of errors that is centered around the
actual target orientation (i.e., zero error). This parameter re-
flects the error variance of trials in which the target was at least
partially perceived. It conveys the precision of the encoding
process or the quality of the representation; the smaller the sd,
the higher the encoding precision. (2) The height (g) of a
uniform distribution of errors that are the result of pure guess-
ing. This parameter indicates the guessing rate. Because the
guessing rate reflects the rate at which the target was not
registered at all, Agaoglu et al. (2015) suggested that this
parameter reflects the signal-to-noise ratio (SNR); the higher
the g, the lower the SNR. (3–4) When a distractor is also
present, another parameter is relevant—the rate of reporting
the orientation of the distractor instead of the target (i.e., sub-
stitution errors). This is modeled by an additional Gaussian
distribution centered on the distractor’s orientation. Because
our design included two distractors, we adopted the two-

misreport mixture model (Shechter & Yashar, 2021), which
allows a separate estimation of the rate of substitution errors
for each of the two different distractors (β1 & β2).

In three experiments, we combined a continuous-report
task with a temporal crowding paradigm. Specifically, a se-
quence of three randomly oriented stimuli was presented to
the same location; the second stimulus in the sequence was the
target (see Fig. 1). The target–distractors SOAs varied across
trials, but all SOAs were longer than the temporal limits of
ordinarymasking. The sequence was followed by a probe, and
the participants rotated it to reproduce the target’s orientation.
In an uncrowded condition, only the target was presented. We
used the two-misreport mixture model to examine which of its
parameters, and the processes they reflect, is affected by tem-
poral crowding. In Experiment 1, all the stimuli were black
and their duration was relatively long (75 ms). In Experiment
2, the stimuli were presented for a considerably shorter time
(20 ms) to examine the role of stimuli duration. In Experiment
3, the target was black and the distractors were white to ex-
amine the role of target–distractors similarity. Lastly, we used
the pattern of results that emerged from these experiments to
compare temporal and spatial crowding as well as temporal
crowding and ordinary masking.

General methods

Observers

Fifteen observers participated in Experiment 1, 17 observers
participated in Experiment 2, and 15 observers participated in
Experiment 3. Out of these overall numbers, two observers
participated in all three experiments, one observer participated
in Experiments 1 and 2, and four observers participated in
Experiments 2 and 3. The sample size was based on previous
successful demonstrations of temporal crowding (Yeshurun
et al., 2015). Furthermore, power analysis obtained with the
Shiny web app (Anderson et al., 2017) for a within-subject
analysis of variance (ANOVA) using an uncertainty and pub-
lication bias correction, indicated that the minimum sample
size required for the examination of SOA effects at a power
>99 % with a Type I error (α < 0.05) is nine participants. The
F values, degrees of freedom, and effect sizes used in this
analysis were based on Yeshurun et al. (2015; ISI effect),
F(9, 126) = 11.96, ηp

2 = 0.46,N = 16. This analysis confirmed
that the current study sample size had sufficient statistical
power. All observers were students from the University of
Haifa, with normal vision, who signed a consent form.
Observers were naïve to the purpose of the study and were
either paid or received course credit for participating. The
study was conducted in accordance with the Declaration of
Helsinki and was approved by the ethics committee of the
University of Haifa.
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Stimuli and apparatus

Stimuli were presented using the Psychophysics Toolbox ex-
tension (Brainard, 1997; Kleiner et al., 2007) in MATLAB on
a 19-in. monitor of an IBM-compatible PC (1,024 × 768 res-
olution at a refresh rate of 85 Hz). Eye movements were re-
corded from the right eye with an EyeLink 1000 eye tracker
(temporal resolution of 1000 Hz; SR Research, Ottawa, ON,
Canada). A sequence of three stimuli was randomly presented
to the right or the left of a central fixation circle (diameter 0.3°)
at an eccentricity of 9° (see Fig. 1). The stimuli were separated
by an SOA that varied between trials (Experiments 1 and 3:
175, 225, 275, 375, 475 ms; Experiment 2: 170, 220, 320,
420, 470 ms). The second stimulus in the sequence was de-
fined as the target. Each stimulus consisted of a circle (diam-
eter 2°) with an inner line (1°). The line’s orientation was
randomly chosen from 360 possible orientations, with the
constraint of a different orientation for each stimulus in the
sequence. The probe was similar to the preceding three stim-
uli, and its initial orientation was also determined randomly. A
baseline (uncrowded) condition, in which only the target was
presented, was also included. The luminance of all stimuli was
0.01 cd/m2, except for Experiment 3, in which the luminance
of the first and third stimuli (i.e., the distractors) was 100 cd/
m2. The background was a uniform gray (23.5 cd/m2). The
chosen presentation side of the stimuli and the SOA were
fixed in each trial but varied between trials.

Procedure

Each trial started with the fixation mark that remained
throughout the trial. After 1,000 ms, in the crowded condition,
the sequence of three stimuli was presented, with the target
being second in the stream. In Experiments 1 and 3, the pre-
sentation duration of each stimulus was 75 ms, and in
Experiment 2 it was 20 ms. In the uncrowded condition, only
the target appeared. The probe was presented 500 ms after the
offset of the third stimulus in the sequence. The task was to
rotate the probe (using the arrow keys) to reproduce the tar-
get’s orientation. When observers thought that the probe’s
orientation matches that of the target, they pressed the space
bar and the next trial began. Throughout the trial, observers
had to fixate their gaze on the central fixation dot, but once the

probe appeared, they could move their eyes. Each observer
participated in 60 practice trials and completed 600 experi-
mental trials that included 100 trials for each target–
distractors SOA condition and 100 trials for the uncrowded
condition.

Model fitting

We excluded trials in which a saccade with an amplitude
greater than 1° was executed (1.4% of total trials). For each
of the remaining trials, we calculated response error as the
difference between the target’s orientation and the response
given by the observer (e.g., if the target’s orientation was 60°
and the observer rotated the probe to an orientation of 80°, the
error measured in this trial was +20°). Response errors ranged
from −180 to 180 degrees. We used the MemToolbox
(Suchow et al., 2013) to fit the two-misreport mixture model,
with all four parameters (g, sd, β1, β2), to the error distribution
of the crowded condition of each participant. The model was
fitted separately for each SOA of the crowded condition. Here
is the full model:

p θð Þ ¼ 1−g−β1−β2ð Þφσ θð Þ þ g=2πþ β1φσ θ1*ð Þ
þ β2φσ θ2*ð Þ ð1Þ

where θ is the response error (i.e., the difference between the
reported orientation and the target’s orientation); g is the
height of the uniform distribution (the proportion of random
guessing); φσ denotes the circular analog of the Gaussian
distribution (the Von Mises distribution) with mean equal to
zero (zero error) and standard deviation σ (sd); β1 is the prob-
ability of misreporting the orientation of the distractor that
preceded the target; and β2 is the probability of misreporting
the orientation of the distractor that followed the target.
Finally, θ1* is the error relative to the orientation of the pre-
ceding distractor, and θ2* is the error relative to the orientation
of the succeeding distractor.

Because the uncrowded condition did not include
distractors, we fitted the error distribution of this condition
with a mixture model that has two free parameters (g, sd):

p θð Þ ¼ 1−gð Þφσ θð Þ þ g=2π ð2Þ

Fig. 1 A schematic depiction of the sequence of events in the crowded
condition of Experiment 1. There were five possible target–distractors
SOAs (175, 225, 275, 375, 475 ms). The SOA was constant within a

trial, but varied between trials. In the uncrowded condition, the distractors
were omitted. The task was to rotate the probe to reproduce the target
orientation
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As can be seen in Fig. 2, with all the three experiments of
this study, the model fits the data well, confirming that this
continuous-report task and the mixture model were adequate
for the study of temporal crowding. To further ensure we were

using the optimal model for our data, we compared the two-
misreport mixture model (Eq. 1) with the standard misreport
mixture model (Eq. 3) that aggregates the contribution of dif-
ferent distractors. The latter model has three free parameters,

Fig. 2 Mean error distribution and model fits (in black) for the uncrowded condition and each SOA of the crowded condition in Experiments 1–3
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the standard deviation (sd), the guessing rate (g), and the rate
of mistakenly reporting the orientation of one of the distractors
(β). Here is the full model, as proposed by Bays et al. (2009)

p θð Þ ¼ 1−g−βð Þφσ θð Þ þ g=2πþ β=m∑
m

i
φσ θi*ð Þ ð3Þ

where m is the number of distractors (two in our study), and
θi* is the error relative to the orientation of the ith distractor.
The models were compared using the Akaike information
criteria with correction (AICc) that includes a penalty term
for each additional model parameter.

Experiment 1

The goal of Experiment 1 was to examine which parameter/s
of the model will be modulated by temporal crowding when
all the stimuli in the sequence have the same luminance
(black) and the presentation duration of each stimulus in the
sequence is relatively long (75 ms).

Results

First, we compared the fits of the models described above for
each participant and each SOA. The two-misreport mixture
model outperformed the standard misreport mixture model.
A one-tailed paired t test showed that the AICc values of the
former were significantly lower than those of the latter, t(14) =
2.22, p = .022, dz = 0.57. We, therefore, continued with the
two-misreport mixture model.

To examine which parameters are affected by temporal
crowding, we performed a one-way (SOA) repeated-
measures ANOVA on each of the model parameters (blue
curves of Fig. 3). A significant effect of SOA was found for
the sd, F(4, 56) = 6.05, p = .0004, ηp

2 = 0.30; β1, F(4, 56) =
9.39, p < .0001, ηp

2 = 0.40; and β2, F(4, 56) = 15.67, p <
.0001, ηp

2 = 0.53, parameters, but not the g parameter, F(4,
56) = 1.97, p = .1113, ηp

2 = 0.13. When SOA was relatively
short and the stimuli were crowded in time, sd, β1, and β2
were high, suggesting that the precision of the target’s
encoding was low and the substitution rate with both preced-
ing and succeeding distractors was high. As the SOA got
longer (i.e., temporal crowding decreased) precision was en-
hanced and substitution errors were reduced. Still, even with
the SOA of 475 ms, sd was significantly larger than that ob-
served in the uncrowded condition, t(14) = 3.62, p = .0014, dz
= 0.936, extending the impact of temporal crowding into even
longer durations than what was found thus far (Tkacz-Domb
& Yeshurun, 2017; Yeshurun et al., 2015). In contrast, the
lack of a significant SOA effect with the guessing rate implies
that temporal crowding may not affect the target’s SNR.

Interestingly, the model fitting to the data further suggests
that the preceding distractor was mistakenly reported as the
target much more often than the succeeding distractor (blue
curves in Fig. 3c vs. 3d). A two-way (SOA × distractor)
repeated-measures ANOVA performed on the rate of substi-
tution errors confirmed that substitution errors were signifi-
cantly more prevalent with the preceding than succeeding
distractor, F(1, 14) = 6.33, p = .0247, p

2 = 0.31, and this
was not qualified by SOA (i.e., no significant interaction with
SOA, F(4, 56) = 1.24, p = .3028, p

2 = 0.08.

Experiment 2

In Experiment 2, stimuli duration was shorter. The goal of this
experiment was threefold. First, it allowed us to test the effect
of stimulus duration on temporal crowding. Second, as will be
detailed in the Discussion section, a shorter stimuli duration
allows a more straightforward comparison between temporal
crowding and ordinary masking. Third, given that the guess-
ing rate found in Experiment 1 was rather low, one might
wonder whether the lack of an SOA effect on the guessing
rate reflects a floor effect. Shortening display duration should
decrease the SNR, which should increase the overall guessing
rate, thereby avoiding floor effect as an alternative explana-
tion. Thus, this experiment was similar to Experiment 1 apart
from shortening the duration of each orientation stimulus to
20 ms and consequently employing slightly different SOAs.

Results

Trial exclusion followed the same criterion as in Experiment 1
(1.7% of total trials), and we performed the same modeling
procedure and statistical analyses. Similar to Experiment 1, a
one-tailed paired t test showed that the AICc values of the
two-misreport mixture model were significantly lower than
those of the standard misreport mixture model, t(16) = 1.9, p
= .038, dz = 0.467, and we therefore continued with the for-
mer. As can be seen in Fig. 3, the pattern of SOA effects on the
model parameters in this experiment (green curves) is very
similar to Experiment 1 (blue curves): sd, β1, and β2 decreased
significantly as the SOA increased, F(4, 64) = 2.56, p = .0468,

p
2 = 0.14; F(4, 64) = 5.82, p = .0005, p

2 = 0.27; and F(4,
64) = 21.17, p < .0001, p

2 = 0.57, respectively, but there was
no significant SOA effect on the guessing rate, F(4, 64) =
1.72, p = 0.1572, p

2 = 0.096, even though the overall guess-
ing rate increased in comparison to Experiment 1. Also similar
to Experiment 1, substitution errors were more prevalent with
the preceding than succeeding distractor, F(1, 16) = 18.28, p =
0.0006, p

2 = 0.53, regardless of SOA, F(4, 64) = 1.99, p =
.1066, p

2 = 0.11. These results suggest that shortening the
stimuli duration does not elicit a qualitative change in the way
in which temporal crowding affects these parameters. This
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further indicates that the lack of a significant effect of temporal
crowding on the SNR, observed in Experiment 1, does not
merely reflect a floor effect.

Experiment 3

Previous studies have demonstrated that spatial crowding de-
creases when the target and flankers are dissimilar (e.g.,
Chakravarthi & Cavanagh, 2007; Kooi et al., 1994; Levi &
Carney, 2009). In this experiment, we examined whether tempo-
ral crowding is also reduced when the target and distractors are
dissimilar. Thus, this experiment was identical to Experiment 1,
except that the target was black and the distractors were white.

Results

Trial exclusion followed the same criterion as in Experiment 1
(1.7% of total trials), and we performed the same modeling pro-
cedure and statistical analyses. In this experiment, the AICc
values of the two-misreport mixture model were also lower than

those of the standardmisreport mixturemodel, but this difference
did not reach statistical significance, t(14) = 0.6, p = .3, dz = 0.17,
likely due to a floor effect, as with both models the rate of
misreporting a distractor was low due to target–distractor dissim-
ilarity (more about this below). Notwithstanding the lack of sig-
nificant difference, because the two-misreport mixture model
provides more information than the standard misreport mixture
model, we continued the analyses with this model.

Once again, these analyses revealed a similar pattern of results
to that found in Experiment 1 (see Fig. 3 red curves): the sd, β1,
and β2 parameters changed significantly with SOA—F(4, 56) =
19.796, p< .0001,ηp

2 = 0.59;F(4, 56) = 12.703, p< .0001,ηp
2 =

0.48; F(4, 56) = 14.397, p < .0001, ηp
2 = 0.51, respectively—but

not the g parameter, F(4, 56) = 0.083, p = .987, ηp
2 = 0.006.

Hence, temporal crowding reduced encoding precision and in-
creased substitution rate, but it did not affect the SNR. Like
before, substitution errors were more frequent with the preceding
than succeeding distractor, F(1, 14) = 43.59, p < .0001, ηp

2 =
0.76, but this time there was also an interaction with SOA, F(4,
56) = 3.42, p = .0143, ηp

2 = 0.196, likely due to a floor effect (see
Fig. 3c–d, red curves).

Fig. 3 The averages of the estimated parameters (a) sd (b) g (c) β1 (d) β2
as a function of SOA in the crowded condition, and the uncrowded
condition (UC) in Experiment 1 (blue), Experiment 2 (green), and
Experiment 3 (red). The data points corresponding to the g parameter of

the uncrowded condition of Experiments 1 and 3 overlap. Error bars
correspond to one within-subject standard error (Cousineau, 2005).
(Color figure online)
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To examine directly the effect of target–distractors similar-
ity on temporal crowding we conducted a two-way mixed-
design ANOVA on the parameters generated for
Experiments 1 and 3, with SOA as a within-subject variable
and similarity as a between-subject variable. Not surprisingly
given the above analyses, a significant main effect of SOA
emerged for the sd, β1, and β2 parameters—F(4, 112) = 20.67,
p < .0001, ηp

2 = 0.43; F(4, 112) = 20.53, p < .0001, ηp
2 = 0.42;

F(4, 112) = 26.18, p < .0001, ηp
2 = 0.48, respectively—but

not for g, F(4, 112) = 1.33, p = .26, ηp
2 = 0.05. However, with

both sd and g parameters there was no significant main effect
of similarity—F(1, 28) = 2.62, p = .12, ηp

2 = 0.09; F(1, 28) =
0.96, p = .34, ηp

2 = 0.03, respectively—nor an SOA ×
Similarity interaction, F(4, 112) = 1.53, p = .198, ηp

2 =
0.05; F(4, 112) = 1.42, p = .23, ηp

2 = 0.05, respectively.
These results suggest that the detrimental effect of temporal
crowding on the encoding precision is present regardless of
target–distractors similarity, and the same holds for the ab-
sence of an effect regarding the SNR. In contrast, with the
β1 and β2 parameters, the main effect of similarity reached
significance, F(1, 28) = 4.26, p = .048, ηp

2 = 0.13; F(1, 28)
= 13.42 p = .001, ηp

2 = 0.32, respectively: Substitution errors
were more frequent when the target and the distractors were
similar than when they were dissimilar. Additionally, with the
β2 parameter there was also a significant interaction (see Fig.
3d red vs. blue curves), which is likely due to a floor effect, β1,
F(4, 112) = 0.68, p = .6, ηp

2 = 0.02; β2, F(4, 112) = 4.76 p =
.0014, ηp

2 = 0.15. Hence, a dissimilarity benefit emerged also
for temporal crowding, but mainly regarding substitution rate
with the succeeding distractor.

Discussion

As was previously demonstrated using a discrete-report task
(Tkacz-Domb & Yeshurun, 2017; Yeshurun et al., 2015),
identifying the target’s orientation was impaired by the pres-
ence of preceding and succeeding distractors even when the
SOA between them was considerably longer than the limits of
ordinary masking. In fact, because the performance was worse
in the crowded than uncrowded condition even with an SOA
of 475 ms, the current study further extends the temporal
range of crowding. Importantly, in this study we were able
to go beyond showing mere performance decrement due to
temporal crowding. Specifically, we found that temporal
crowding degraded the precision of the target’s encoding, in-
creased substitution errors with both preceding and
succeeding distractors, but did not affect the guessing rate.
This pattern of results was similar when the target and
distractors had the same luminance and relatively long dura-
tion (Experiment 1), when their duration was considerably
shorter (Experiment 2), and when the target and distractors
had different luminance.

The task and analyses employed here further allowed us to
consider the possibility that similar processes underlie
temporal crowding and ordinary masking, only on a
different time scale. This is because Agaoglu et al. (2015)
examined several types of ordinary masking using similar task
and analyses, but with much shorter target-mask SOAs (up to
110 ms). Among the masking types examined, pattern making
by structure is most relevant for our study because the struc-
ture mask shares features with the target. The primary effect of
SOA that emerged with structure masking was a significant
increase in guessing rate, suggesting that structure masking
mainly decreases the SNR. There was no significant effect
of SOA on the encoding precision or substitution errors.
Thus, Agaoglu et al.’s pattern of results is basically opposite
to ours, suggesting that masking and temporal crowding re-
flect distinct processes.

The task and analyses adopted in this study also allowed us
to compare crowding across time and space because Ester
et al. (2014) used similar methods, only they examined spatial
crowding and therefore the distractors appeared simultaneous-
ly with the target at adjacent locations. Thus, whereas we
varied target–distractor distance in time, they varied target–
distractor distance in space (in their Experiment 3). Unlike our
results, they found significant effects of target–distractor dis-
tance on the guessing and substitution rates, but not on preci-
sion. These different patterns of results suggest that these two
types of crowding reflect different processes. However, like
us, Ester et al. found in their Experiment 2 that the manipula-
tion of target–distractor similarity mainly affected substitution
rate. Thus, temporal and spatial crowding show some
commonalities.

The lack of an SOA effect on the guessing rate suggests
that temporal crowding may not affect the SNR. This further
suggests that temporal crowding, likely, does not involve in-
tegrating the target’s and the distractors’ signals into a single
unit, as was suggested for ordinary masking over short SOAs
(e.g., Enns, 2004). Instead, the performance decrement
brought about by temporal crowding seems to have two com-
ponents: (1) In all three experiments, shorter SOAs increased
the frequency of reporting a distractor instead of the target.
This seems akin to substitution masking in which the target
representation is replaced with that of the mask (e.g., Di Lollo
et al., 2000). However, substitution masking typically refers to
backwardmasking, while we found substitution errors also for
the preceding distractor. In fact, more substitution errors were
found with the preceding than succeeding distractor. This
finding may reflect source confusion in the time domain.
Several studies suggested that spatial crowding is at least par-
tially due to confusion regarding the spatial position of the
target (e.g., Ester et al., 2014; Strasburger & Malania, 2013).
Perhaps temporal crowding is also partially due to source con-
fusion, only here the confusion is about the onset time of each
stimulus rather than its spatial position. If so, our data suggest
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that there is a kind of recency effect: There is less source
confusion regarding the most recent item. (2) In all three ex-
periments, shorter SOAs resulted in a significantly larger sd.
This suggests that the distractors interfere with the processing
of the target, before this processing is completed, thereby re-
ducing the precision of the target’s encoding. The fact that
precision was lower in the crowded than uncrowded condition
evenwith the longest SOA (475ms) suggests that the process-
ing of the target is not completed even after such a long period.
This finding is consistent with other demonstrations of long-
lasting temporal interactions (Otto et al., 2009; Scharnowski
et al., 2009), and it raises a need to reconsider conclusions that
are based on evidence of very fast visual processing. Although
previous evidence undoubtedly demonstrated that some rep-
resentation of visual information may be available after ~150
ms, our findings show that a robust and stable representation
requires considerably longer processing time.

Finally, one may wonder whether temporal crowding is re-
lated to the attentional blink phenomenon, in which the identi-
fication of a second target is impaired when the temporal inter-
val between it and a first target is within the range of about
200–600 ms (e.g., Chun & Potter, 1995; Raymond et al., 1992;
for a recent review, see Snir & Yeshurun, 2017). However, the
attentional blink phenomenon is fundamentally different from
temporal crowding. With the attentional blink, a faster stream
of stimuli (SOAs around 100 ms) is presented, and the partic-
ipants are required to report two targets. The identification im-
pairment is observed for the second target, and it is typically
attributed to the need to encode the first target. No impairment
is observed for the first target within this range of temporal
intervals, even though other nontarget items precede and suc-
ceed it. In contrast, with temporal crowding, the participants are
required to report only a single target and therefore the ob-
served identification impairment cannot be attributed to the
need to encode another target.

In sum, combining a continuous-report task and mixture
model analysis with temporal crowding displays allowed us
to examine, for the first time, the nature of the impairment
brought about by ‘pure’ temporal crowding. We found that
temporal crowding impaired the precision of the target’s
encoding and increased substitution errors but had no effect
on the target’s SNR. Moreover, this pattern of results is qual-
itatively different than that found for ordinary masking and
spatial crowding, suggesting that these three phenomena are
mediated by different processes. The fact that stimuli separat-
ed from the target by almost half a second still affected the
quality of the target’s representation suggests that the process-
ing of visual information requires a considerably longer time
to complete than the current belief.
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